BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22091828)

  • 1. Development and field-scale optimization of a honeycomb zeolite rotor concentrator/recuperative oxidizer for the abatement of volatile organic carbons from semiconductor industry.
    Yang J; Chen Y; Cao L; Guo Y; Jia J
    Environ Sci Technol; 2012 Jan; 46(1):441-6. PubMed ID: 22091828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing operating parameters of a honeycomb zeolite rotor concentrator for processing TFT-LCD volatile organic compounds with competitive adsorption characteristics.
    Lin YC; Chang FT
    J Hazard Mater; 2009 May; 164(2-3):517-26. PubMed ID: 18804914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and desorption characteristics of semiconductor volatile organic compounds on the thermal swing honeycomb zeolite concentrator.
    Chang FT; Lin YC; Bai H; Pei BS
    J Air Waste Manag Assoc; 2003 Nov; 53(11):1384-90. PubMed ID: 14649758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stripping of organic compounds from wastewater as an auxiliary fuel of regenerative thermal oxidizer.
    Chang MW; Chern JM
    J Hazard Mater; 2009 Aug; 167(1-3):553-9. PubMed ID: 19195779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BTX abatement using Chilean natural zeolite: the role of Brønsted acid sites.
    Alejandro S; Valdés H; Manero MH; Zaror CA
    Water Sci Technol; 2012; 66(8):1759-65. PubMed ID: 22907462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of an adsorption system to concentrate VOC in air streams prior to catalytic incineration.
    Campesi MA; Luzi CD; Barreto GF; Martínez OM
    J Environ Manage; 2015 May; 154():216-24. PubMed ID: 25734958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of carbon cryogel microspheres as adsorbents for VOC.
    Yamamoto T; Kataoka S; Ohmori T
    J Hazard Mater; 2010 May; 177(1-3):331-5. PubMed ID: 20042276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Siloxane treatment by adsorption into porous materials.
    Ricaurte Ortega D; Subrenat A
    Environ Technol; 2009 Sep; 30(10):1073-83. PubMed ID: 19886432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.
    Hajizadeh Y; Onwudili JA; Williams PT
    Waste Manag; 2011 Jun; 31(6):1194-201. PubMed ID: 21334872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic combustion of volatile organic compounds.
    Everaert K; Baeyens J
    J Hazard Mater; 2004 Jun; 109(1-3):113-39. PubMed ID: 15177752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis of the treatment technology pathway of VOCs released from oven].
    Li ZQ; Luo FK
    Huan Jing Ke Xue; 2011 Dec; 32(12):3685-8. PubMed ID: 22468540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance characteristics of a regenerative catalytic oxidizer for treating VOC-contaminated airstreams.
    Chou MS; Cheng WH; Lee WS
    J Air Waste Manag Assoc; 2000 Dec; 50(12):2112-9. PubMed ID: 11140140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VOC removal and deodorization of effluent gases from an industrial plant by photo-oxidation, chemical oxidation, and ozonization.
    Domeño C; Rodríguez-Lafuente A; Martos JM; Bilbao R; Nerín C
    Environ Sci Technol; 2010 Apr; 44(7):2585-91. PubMed ID: 20192167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reutilization of Cr-Y zeolite obtained by biosorption in the catalytic oxidation of volatile organic compounds.
    Silva B; Figueiredo H; Santos VP; Pereira MF; Figueiredo JL; Lewandowska AE; Bañares MA; Neves IC; Tavares T
    J Hazard Mater; 2011 Aug; 192(2):545-53. PubMed ID: 21684081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization of the exothermal VOC adsorption in a fixed-bed activated carbon adsorber.
    Le Cloirec P; Pré P; Delage F; Giraudet S
    Environ Technol; 2012; 33(1-3):285-90. PubMed ID: 22519113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Qualitative analysis of volatile organic compounds on biochar.
    Spokas KA; Novak JM; Stewart CE; Cantrell KB; Uchimiya M; Dusaire MG; Ro KS
    Chemosphere; 2011 Oct; 85(5):869-82. PubMed ID: 21788060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal.
    Li L; Liu S; Liu J
    J Hazard Mater; 2011 Aug; 192(2):683-90. PubMed ID: 21683520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of VOCs with molecular sieve catalysts in regenerative catalytic oxidizer.
    Huang SW; Lou JC; Lin YC
    J Hazard Mater; 2010 Nov; 183(1-3):641-7. PubMed ID: 20692765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective utilization of waste ash from MSW and coal co-combustion power plant: Zeolite synthesis.
    Fan Y; Zhang FS; Zhu J; Liu Z
    J Hazard Mater; 2008 May; 153(1-2):382-8. PubMed ID: 17913357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key factors in the volatile organic compounds treatment by regenerative thermal oxidizer.
    Wang F; Lei X; Hao X
    J Air Waste Manag Assoc; 2020 May; 70(5):557-567. PubMed ID: 32255399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.