These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
430 related articles for article (PubMed ID: 22091832)
1. Repair of rabbit ulna segmental bone defect using freshly isolated adipose-derived stromal vascular fraction. Kim A; Kim DH; Song HR; Kang WH; Kim HJ; Lim HC; Cho DW; Bae JH Cytotherapy; 2012 Mar; 14(3):296-305. PubMed ID: 22091832 [TBL] [Abstract][Full Text] [Related]
2. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically. Jeon O; Rhie JW; Kwon IK; Kim JH; Kim BS; Lee SH Tissue Eng Part A; 2008 Aug; 14(8):1285-94. PubMed ID: 18593269 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of tibial regeneration in a rat model by adipose-derived stromal cells in a PLGA scaffold. Park BH; Zhou L; Jang KY; Park HS; Lim JM; Yoon SJ; Lee SY; Kim JR Bone; 2012 Sep; 51(3):313-23. PubMed ID: 22684001 [TBL] [Abstract][Full Text] [Related]
4. In vivo evaluation of mixtures of uncultured freshly isolated adipose-derived stem cells and demineralized bone matrix for bone regeneration in a rat critically sized calvarial defect model. Rhee SC; Ji YH; Gharibjanian NA; Dhong ES; Park SH; Yoon ES Stem Cells Dev; 2011 Feb; 20(2):233-42. PubMed ID: 20528145 [TBL] [Abstract][Full Text] [Related]
5. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold. Hao W; Hu YY; Wei YY; Pang L; Lv R; Bai JP; Xiong Z; Jiang M Cells Tissues Organs; 2008; 187(2):89-102. PubMed ID: 17938566 [TBL] [Abstract][Full Text] [Related]
6. A novel strategy of spine defect repair with a degradable bioactive scaffold preloaded with adipose-derived stromal cells. Liang H; Li X; Shimer AL; Balian G; Shen FH Spine J; 2014 Mar; 14(3):445-54. PubMed ID: 24360747 [TBL] [Abstract][Full Text] [Related]
7. Rapid Induction of Osteogenic Markers in Mesenchymal Stem Cells by Adipose-Derived Stromal Vascular Fraction Cells. Choi JW; Shin S; Lee CY; Lee J; Seo HH; Lim S; Lee S; Kim IK; Lee HB; Kim SW; Hwang KC Cell Physiol Biochem; 2017; 44(1):53-65. PubMed ID: 29131029 [TBL] [Abstract][Full Text] [Related]
8. In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model. Yoon E; Dhar S; Chun DE; Gharibjanian NA; Evans GR Tissue Eng; 2007 Mar; 13(3):619-27. PubMed ID: 17518608 [TBL] [Abstract][Full Text] [Related]
9. Skeletal repair in rabbits using a novel biomimetic composite based on adipose-derived stem cells encapsulated in collagen I gel with PLGA-beta-TCP scaffold. Hao W; Pang L; Jiang M; Lv R; Xiong Z; Hu YY J Orthop Res; 2010 Feb; 28(2):252-7. PubMed ID: 19688871 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Stromal Vascular Fraction and Passaged Adipose-Derived Stromal/Stem Cells as Point-of-Care Agents for Bone Regeneration. Nyberg E; Farris A; O'Sullivan A; Rodriguez R; Grayson W Tissue Eng Part A; 2019 Nov; 25(21-22):1459-1469. PubMed ID: 30734661 [TBL] [Abstract][Full Text] [Related]
11. Osteogenic differentiation of human adipose tissue-derived stromal cells (hASCs) in a porous three-dimensional scaffold. Lee JH; Rhie JW; Oh DY; Ahn ST Biochem Biophys Res Commun; 2008 Jun; 370(3):456-60. PubMed ID: 18395007 [TBL] [Abstract][Full Text] [Related]
12. Efficacy of intraoperatively prepared cell-based constructs for bone regeneration. Zhang Y; Grosfeld EC; Camargo WA; Tang H; Magri AMP; van den Beucken JJJP Stem Cell Res Ther; 2018 Oct; 9(1):283. PubMed ID: 30359312 [TBL] [Abstract][Full Text] [Related]
13. Reconstruction of segmental bone defects in the rabbit ulna using periosteum encapsulated mesenchymal stem cells-loaded poly (lactic-co-glycolic acid) scaffolds. Zhang X; Qi YY; Zhao TF; Li D; Dai XS; Niu L; He RX Chin Med J (Engl); 2012 Nov; 125(22):4031-6. PubMed ID: 23158138 [TBL] [Abstract][Full Text] [Related]
14. Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells. Kim KI; Park S; Im GI Biomaterials; 2014 Jun; 35(17):4792-804. PubMed ID: 24655782 [TBL] [Abstract][Full Text] [Related]
15. Bone regeneration in a rabbit ulna defect model: use of allogeneic adipose-derivedstem cells with low immunogenicity. Gu H; Xiong Z; Yin X; Li B; Mei N; Li G; Wang C Cell Tissue Res; 2014 Nov; 358(2):453-64. PubMed ID: 25064029 [TBL] [Abstract][Full Text] [Related]
16. [Osteogenic capability of primary human adipose-derived stromal cells in vivo]. Liu YS; Zhou YS; Ge WS; Ma GE; Zhang X; Xu YW Beijing Da Xue Xue Bao Yi Xue Ban; 2012 Feb; 44(1):55-8. PubMed ID: 22353901 [TBL] [Abstract][Full Text] [Related]
17. Ectopic osteogenic capacity of freshly isolated adipose-derived stromal vascular fraction cells supported with platelet-rich plasma: A simulation of intraoperative procedure. Najman SJ; Cvetković VJ; Najdanović JG; Stojanović S; Vukelić-Nikolić MĐ; Vučković I; Petrović D J Craniomaxillofac Surg; 2016 Oct; 44(10):1750-1760. PubMed ID: 27624644 [TBL] [Abstract][Full Text] [Related]
18. Allogeneic adipose-derived stem cells regenerate bone in a critical-sized ulna segmental defect. Wen C; Yan H; Fu S; Qian Y; Wang D; Wang C Exp Biol Med (Maywood); 2016 Jul; 241(13):1401-9. PubMed ID: 25819682 [TBL] [Abstract][Full Text] [Related]
19. Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study. Fennema EM; Tchang LAH; Yuan H; van Blitterswijk CA; Martin I; Scherberich A; de Boer J J Tissue Eng Regen Med; 2018 Jan; 12(1):e150-e158. PubMed ID: 28485099 [TBL] [Abstract][Full Text] [Related]
20. Adipose Tissue-Derived Stromal Vascular Fraction Increases Osteogenesis in an Experimental Design Zygomatic Bone Defect Model. Toplu G; Ozcelik D; Serin M; Erdem H; Topacoglu AT J Craniofac Surg; 2017 Nov; 28(8):2179-2182. PubMed ID: 28938327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]