These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22091984)

  • 1. Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials.
    Zafar MN; Wang X; Sygmund C; Ludwig R; Leech D; Gorton L
    Anal Chem; 2012 Jan; 84(1):334-41. PubMed ID: 22091984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of different FAD-dependent glucose dehydrogenases for possible use in glucose-based biosensors and biofuel cells.
    Zafar MN; Beden N; Leech D; Sygmund C; Ludwig R; Gorton L
    Anal Bioanal Chem; 2012 Feb; 402(6):2069-77. PubMed ID: 22222911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of an Os Complex-Modified Hydrogel with Optimized Redox Potential for Biosensors and Biofuel Cells.
    Pinyou P; Ruff A; Pöller S; Ma S; Ludwig R; Schuhmann W
    Chemistry; 2016 Apr; 22(15):5319-26. PubMed ID: 26929043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FAD-Dependent Glucose Dehydrogenase Immobilization and Mediation Within a Naphthoquinone Redox Polymer.
    Milton RD
    Methods Mol Biol; 2017; 1504():193-202. PubMed ID: 27770423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wiring of pyranose dehydrogenase with osmium polymers of different redox potentials.
    Zafar MN; Tasca F; Boland S; Kujawa M; Patel I; Peterbauer CK; Leech D; Gorton L
    Bioelectrochemistry; 2010 Nov; 80(1):38-42. PubMed ID: 20466600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exceptionally high glucose current on a hierarchically structured porous carbon electrode with "wired" flavin adenine dinucleotide-dependent glucose dehydrogenase.
    Tsujimura S; Murata K; Akatsuka W
    J Am Chem Soc; 2014 Oct; 136(41):14432-7. PubMed ID: 25244161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability.
    Rengaraj S; Kavanagh P; Leech D
    Biosens Bioelectron; 2011 Dec; 30(1):294-9. PubMed ID: 22005596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron transfer between genetically modified Hansenula polymorpha yeast cells and electrode surfaces via Os-complex modified redox polymers.
    Shkil H; Schulte A; Guschin DA; Schuhmann W
    Chemphyschem; 2011 Mar; 12(4):806-13. PubMed ID: 21337486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of performance and stability of biocatalytic redox films constructed with different copper oxygenases and osmium-based redox polymers.
    Jenkins PA; Boland S; Kavanagh P; Leech D
    Bioelectrochemistry; 2009 Sep; 76(1-2):162-8. PubMed ID: 19481981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Direct and Mediated Electron Transfer in Electrodes with Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase.
    Ishida K; Orihara K; Muguruma H; Iwasa H; Hiratsuka A; Tsuji K; Kishimoto T
    Anal Sci; 2018; 34(7):783-787. PubMed ID: 29998959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemistry in diabetes management.
    Heller A; Feldman B
    Acc Chem Res; 2010 Jul; 43(7):963-73. PubMed ID: 20384299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biofuel cell with electrochemically switchable and tunable power output.
    Katz E; Willner I
    J Am Chem Soc; 2003 Jun; 125(22):6803-13. PubMed ID: 12769592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications.
    Pöller S; Beyl Y; Vivekananthan J; Guschin DA; Schuhmann W
    Bioelectrochemistry; 2012 Oct; 87():178-84. PubMed ID: 22209452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling osmium complexes to epoxy-functionalised polymers to provide mediated enzyme electrodes for glucose oxidation.
    Ó Conghaile P; Pöller S; MacAodha D; Schuhmann W; Leech D
    Biosens Bioelectron; 2013 May; 43():30-7. PubMed ID: 23274194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "Wiring" hydrogels.
    Mao F; Mano N; Heller A
    J Am Chem Soc; 2003 Apr; 125(16):4951-7. PubMed ID: 12696915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical and biosensing properties of an FAD-dependent glucose dehydrogenase from Trichoderma virens.
    Wijayanti SD; Schachinger F; Ludwig R; Haltrich D
    Bioelectrochemistry; 2023 Oct; 153():108480. PubMed ID: 37269684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a carbon nanotube paste electrode osmium polymer-mediated biosensor for determination of glucose in alcoholic beverages.
    Antiochia R; Gorton L
    Biosens Bioelectron; 2007 May; 22(11):2611-7. PubMed ID: 17175156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocatalytic reaction of hydrogen peroxide and NADH based on poly(neutral red) and FAD hybrid film.
    Lin KC; Lin YC; Chen SM
    Analyst; 2012 Jan; 137(1):186-94. PubMed ID: 22046584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving enzyme-electrode contacts by redox modification of cofactors.
    Riklin A; Katz E; Willner I; Stocker A; Bückmann AF
    Nature; 1995 Aug; 376(6542):672-5. PubMed ID: 7651516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membraneless glucose/oxygen enzymatic fuel cells using redox hydrogel films containing carbon nanotubes.
    MacAodha D; Ó Conghaile P; Egan B; Kavanagh P; Leech D
    Chemphyschem; 2013 Jul; 14(10):2302-7. PubMed ID: 23788272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.