These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22092149)

  • 41. Enhanced electrochemical oxygen reduction-based glucose sensing using glucose oxidase on nanodendritic poly[meso-tetrakis(2-thienyl)porphyrinato]cobalt(II)-SWNTs composite electrodes.
    Chen W; Ding Y; Akhigbe J; Brückner C; Li CM; Lei Y
    Biosens Bioelectron; 2010 Oct; 26(2):504-10. PubMed ID: 20813516
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Singling out the electrochemistry of individual single-walled carbon nanotubes in solution.
    Paolucci D; Franco MM; Iurlo M; Marcaccio M; Prato M; Zerbetto F; Pénicaud A; Paolucci F
    J Am Chem Soc; 2008 Jun; 130(23):7393-9. PubMed ID: 18479091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry.
    Chen CL; Yang CF; Agarwal V; Kim T; Sonkusale S; Busnaina A; Chen M; Dokmeci MR
    Nanotechnology; 2010 Mar; 21(9):095504. PubMed ID: 20139486
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping.
    Samanta SK; Fritsch M; Scherf U; Gomulya W; Bisri SZ; Loi MA
    Acc Chem Res; 2014 Aug; 47(8):2446-56. PubMed ID: 25025887
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-performance partially aligned semiconductive single-walled carbon nanotube transistors achieved with a parallel technique.
    Wang Y; Pillai SK; Chan-Park MB
    Small; 2013 Sep; 9(17):2960-9. PubMed ID: 23441038
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Carbon nanotube-based ethanol sensors.
    Brahim S; Colbern S; Gump R; Moser A; Grigorian L
    Nanotechnology; 2009 Jun; 20(23):235502. PubMed ID: 19448296
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Filling single-wall carbon nanotubes with d- and f-metal chloride and metal nanowires.
    Satishkumar BC; Taubert A; Luzzi DE
    J Nanosci Nanotechnol; 2003; 3(1-2):159-63. PubMed ID: 12908245
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simultaneous discrimination of diameter, handedness, and metallicity of single-walled carbon nanotubes with chiral diporphyrin nanocalipers.
    Liu G; Wang F; Chaunchaiyakul S; Saito Y; Bauri AK; Kimura T; Kuwahara Y; Komatsu N
    J Am Chem Soc; 2013 Mar; 135(12):4805-14. PubMed ID: 23452039
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Narrowing SWNT diameter distribution using size-separated ferritin-based Fe catalysts.
    Durrer L; Greenwald J; Helbling T; Muoth M; Riek R; Hierold C
    Nanotechnology; 2009 Sep; 20(35):355601. PubMed ID: 19671985
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrochemical hydrogen storage in single-walled carbon nanotube paper.
    Guo ZP; Ng SH; Wang JZ; Huang ZG; Liu HK; Too CO; Wallace GG
    J Nanosci Nanotechnol; 2006 Mar; 6(3):713-8. PubMed ID: 16573126
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controllable and Reproducible Sheath of Carbon Fibers with Single-Walled Carbon Nanotubes through Electrophoretic Deposition for In Vivo Electrochemical Measurements.
    Xiao T; Jiang Y; Ji W; Mao L
    Anal Chem; 2018 Apr; 90(7):4840-4846. PubMed ID: 29517222
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fast detection of the metallic state of individual single-walled carbon nanotubes using a transient-absorption optical microscope.
    Jung Y; Slipchenko MN; Liu CH; Ribbe AE; Zhong Z; Yang C; Cheng JX
    Phys Rev Lett; 2010 Nov; 105(21):217401. PubMed ID: 21231351
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes.
    Chen RS; Huang WH; Tong H; Wang ZL; Cheng JK
    Anal Chem; 2003 Nov; 75(22):6341-5. PubMed ID: 14616019
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrochemical properties and myocyte interaction of carbon nanotube microelectrodes.
    Fung AO; Tsiokos C; Paydar O; Chen LH; Jin S; Wang Y; Judy JW
    Nano Lett; 2010 Nov; 10(11):4321-7. PubMed ID: 20954739
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrochemical properties of catechin at a single-walled carbon nanotubes-cetylramethylammonium bromide modified electrode.
    Yang LJ; Tang C; Xiong HY; Zhang XH; Wang SF
    Bioelectrochemistry; 2009 Jun; 75(2):158-62. PubMed ID: 19383571
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rational attachment of synthetic triptycene orthoquinone onto carbon nanotubes for electrocatalysis and sensitive detection of thiols.
    Gong K; Zhu X; Zhao R; Xiong S; Mao L; Chen C
    Anal Chem; 2005 Dec; 77(24):8158-65. PubMed ID: 16351170
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties.
    Zhang X; Lü Z; Wen M; Liang H; Zhang J; Liu Z
    J Phys Chem B; 2005 Jan; 109(3):1101-7. PubMed ID: 16851066
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of dispersion conditions of single-walled carbon nanotubes on the electrical characteristics of thin film network transistors.
    Barman SN; LeMieux MC; Baek J; Rivera R; Bao Z
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2672-8. PubMed ID: 20738099
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identifying and counting point defects in carbon nanotubes.
    Fan Y; Goldsmith BR; Collins PG
    Nat Mater; 2005 Dec; 4(12):906-11. PubMed ID: 16267574
    [TBL] [Abstract][Full Text] [Related]  

  • 60. D-fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode.
    Tominaga M; Nomura S; Taniguchi I
    Biosens Bioelectron; 2009 Jan; 24(5):1184-8. PubMed ID: 18707862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.