These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22092149)

  • 61. The heterogeneous integration of single-walled carbon nanotubes onto complementary metal oxide semiconductor circuitry for sensing applications.
    Chen CL; Agarwal V; Sonkusale S; Dokmeci MR
    Nanotechnology; 2009 Jun; 20(22):225302. PubMed ID: 19433877
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Role of peptide--peptide interactions in stabilizing peptide-wrapped single-walled carbon nanotubes: a molecular dynamics study.
    Chiu CC; Dieckmann GR; Nielsen SO
    Biopolymers; 2009; 92(3):156-63. PubMed ID: 19226620
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Modification of electron structure on the semiconducting single-walled carbon nanotubes for effectively electrosensing guanine and adenine.
    Ji L; Yu S; Zhou X; Bao Y; Yang F; Kang W; Zhang X
    Anal Chim Acta; 2019 Nov; 1079():86-93. PubMed ID: 31387723
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A simple, efficient suspension of individual multi-walled carbon nanotubes based on a deep trench electrode.
    Han CS; Lee JH; Seo HW; Song JW; Kim JE; Won M
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3770-4. PubMed ID: 17256328
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electric field-assisted deposition of nanowires on carbon nanotubes for nanoelectronics and sensor applications.
    Sivakumar K; Panchapakesan B
    J Nanosci Nanotechnol; 2005 Feb; 5(2):313-8. PubMed ID: 15853154
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing.
    Vairavapandian D; Vichchulada P; Lay MD
    Anal Chim Acta; 2008 Sep; 626(2):119-29. PubMed ID: 18790113
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Single-molecule electrocatalysis by single-walled carbon nanotubes.
    Xu W; Shen H; Kim YJ; Zhou X; Liu G; Park J; Chen P
    Nano Lett; 2009 Dec; 9(12):3968-73. PubMed ID: 19366213
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Incorporation of single-walled carbon nanotubes into ferrocene-modified linear polyethylenimine redox polymer films.
    Tran TO; Lammert EG; Chen J; Merchant SA; Brunski DB; Keay JC; Johnson MB; Glatzhofer DT; Schmidtke DW
    Langmuir; 2011 May; 27(10):6201-10. PubMed ID: 21480616
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Voltammetric determination of Cd2+ based on the bifunctionality of single-walled carbon nanotubes-Nafion film.
    Sun D; Xie X; Cai Y; Zhang H; Wu K
    Anal Chim Acta; 2007 Jan; 581(1):27-31. PubMed ID: 17386421
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes.
    Zhang X; Jiao K; Liu S; Hu Y
    Anal Chem; 2009 Aug; 81(15):6006-12. PubMed ID: 20337392
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Metallic Catalysts for Structure-Controlled Growth of Single-Walled Carbon Nanotubes.
    Li M; Liu X; Zhao X; Yang F; Wang X; Li Y
    Top Curr Chem (Cham); 2017 Apr; 375(2):29. PubMed ID: 28251565
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Carbon nanotube DNA sensor and sensing mechanism.
    Tang X; Bansaruntip S; Nakayama N; Yenilmez E; Chang YL; Wang Q
    Nano Lett; 2006 Aug; 6(8):1632-6. PubMed ID: 16895348
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Single-walled carbon nanotubes deposited on surface electrodes to improve interface impedance.
    Gabriel G; Gómez-Martínez R; Villa R
    Physiol Meas; 2008 Jun; 29(6):S203-12. PubMed ID: 18544808
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Bright fluorescence from individual single-walled carbon nanotubes.
    Lee AJ; Wang X; Carlson LJ; Smyder JA; Loesch B; Tu X; Zheng M; Krauss TD
    Nano Lett; 2011 Apr; 11(4):1636-40. PubMed ID: 21417364
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Amperometric detection of dopamine based on tyrosinase-SWNTs-Ppy composite electrode.
    Min K; Yoo YJ
    Talanta; 2009 Dec; 80(2):1007-11. PubMed ID: 19836587
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A novel nanohybrid of daunomycin and single-walled carbon nanotubes: photophysical properties and enhanced electrochemical activity.
    Lu Y; Yang X; Ma Y; Huang Y; Chen Y
    Biotechnol Lett; 2008 Jun; 30(6):1031-5. PubMed ID: 18224281
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hydrogen sensing with diameter- and chirality-sorted carbon nanotubes.
    Ganzhorn M; Vijayaraghavan A; Dehm S; Hennrich F; Green AA; Fichtner M; Voigt A; Rapp M; von Löhneysen H; Hersam MC; Kappes MM; Krupke R
    ACS Nano; 2011 Mar; 5(3):1670-6. PubMed ID: 21341751
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A DNA electrochemical sensor prepared by electrodepositing zirconia on composite films of single-walled carbon nanotubes and poly(2,6-pyridinedicarboxylic acid), and its application to detection of the PAT gene fragment.
    Yang J; Jiao K; Yang T
    Anal Bioanal Chem; 2007 Oct; 389(3):913-21. PubMed ID: 17851654
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors.
    Tsai TW; Heckert G; Neves LF; Tan Y; Kao DY; Harrison RG; Resasco DE; Schmidtke DW
    Anal Chem; 2009 Oct; 81(19):7917-25. PubMed ID: 19788314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.