BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22092355)

  • 1. Assessing factors underlying variation of CO2 emissions in boreal lakes vs. reservoirs.
    Tadonléké RD; Marty J; Planas D
    FEMS Microbiol Ecol; 2012 Feb; 79(2):282-97. PubMed ID: 22092355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal Changes in Plankton Food Web Structure and Carbon Dioxide Flux from Southern California Reservoirs.
    Adamczyk EM; Shurin JB
    PLoS One; 2015; 10(10):e0140464. PubMed ID: 26473601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions.
    Huttunen JT; Alm J; Liikanen A; Juutinen S; Larmola T; Hammar T; Silvola J; Martikainen PJ
    Chemosphere; 2003 Jul; 52(3):609-21. PubMed ID: 12738299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide supersaturation promotes primary production in lakes.
    Jansson M; Karlsson J; Jonsson A
    Ecol Lett; 2012 Jun; 15(6):527-32. PubMed ID: 22420750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems.
    Williams CJ; Frost PC; Morales-Williams AM; Larson JH; Richardson WB; Chiandet AS; Xenopoulos MA
    Glob Chang Biol; 2016 Feb; 22(2):613-26. PubMed ID: 26390994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abiotic processes control carbon dioxide dynamics in temperate karst lakes.
    Vargas-Sánchez M; Alcocer J; Puche E; Sánchez-Carrillo S
    PeerJ; 2024; 12():e17393. PubMed ID: 38799067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evidence that terrestrial carbon subsidies increase CO2 flux from lake ecosystems.
    Lennon JT
    Oecologia; 2004 Mar; 138(4):584-91. PubMed ID: 14689297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The microbial loop in the planktonic communities in lakes with various trophic status].
    Kopylov AI; Kosolapov DB; Romanenko AV; Krylov AV; Korneva LG; Gusev ES
    Zh Obshch Biol; 2007; 68(5):350-60. PubMed ID: 18038648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zooplankton structure and potential food web interactions in the plankton of a subtropical chain-of-lakes.
    Havens KE
    ScientificWorldJournal; 2002 Apr; 2():926-42. PubMed ID: 12805947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Food web efficiency differs between humic and clear water lake communities in response to nutrients and light.
    Faithfull CL; Mathisen P; Wenzel A; Bergström AK; Vrede T
    Oecologia; 2015 Mar; 177(3):823-835. PubMed ID: 25373827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An urban boreal lake basin as a source of CO₂ and CH₄.
    López Bellido J; Peltomaa E; Ojala A
    Environ Pollut; 2011 Jun; 159(6):1649-59. PubMed ID: 21420770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Top consumer abundance influences lake methane efflux.
    Devlin SP; Saarenheimo J; Syväranta J; Jones RI
    Nat Commun; 2015 Nov; 6():8787. PubMed ID: 26531291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic matter quality structures benthic fatty acid patterns and the abundance of fungi and bacteria in temperate lakes.
    Taube R; Ganzert L; Grossart HP; Gleixner G; Premke K
    Sci Total Environ; 2018 Jan; 610-611():469-481. PubMed ID: 28818662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revision of methane and carbon dioxide emissions from inland waters in India.
    Li S; Bush RT
    Glob Chang Biol; 2015 Jan; 21(1):6-8. PubMed ID: 25099878
    [No Abstract]   [Full Text] [Related]  

  • 15. [Seasonal variability of p(CO2) in the two Karst reservoirs, Hongfeng and Baihua Lakes in Guizhou Province, China].
    Lü YC; Liu CQ; Wang SL; Xu G; Liu F
    Huan Jing Ke Xue; 2007 Dec; 28(12):2674-81. PubMed ID: 18290419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decrease in CO2 efflux from northern hardwater lakes with increasing atmospheric warming.
    Finlay K; Vogt RJ; Bogard MJ; Wissel B; Tutolo BM; Simpson GL; Leavitt PR
    Nature; 2015 Mar; 519(7542):215-8. PubMed ID: 25731167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What Underpins the Trophic Networks of the Plankton in Shallow Oxbow Lakes?
    Kosiba J; Wilk-Woźniak E; Krztoń W; Strzesak M; Pociecha A; Walusiak E; Pudaś K; Szarek-Gwiazda E
    Microb Ecol; 2017 Jan; 73(1):17-28. PubMed ID: 27544677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simplified approach to detect a significant carbon dioxide reduction by phytoplankton in lakes and rivers on a regional and global scale.
    Engel F; Attermeyer K; Weyhenmeyer GA
    Naturwissenschaften; 2020 Jun; 107(4):29. PubMed ID: 32577913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increases in terrestrially derived carbon stimulate organic carbon processing and CO₂ emissions in boreal aquatic ecosystems.
    Lapierre JF; Guillemette F; Berggren M; del Giorgio PA
    Nat Commun; 2013; 4():2972. PubMed ID: 24336188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precipitation and temperature drive seasonal variation in bioaccumulation of polycyclic aromatic hydrocarbons in the planktonic food webs of a subtropical shallow eutrophic lake in China.
    Tao Y; Yu J; Xue B; Yao S; Wang S
    Sci Total Environ; 2017 Apr; 583():447-457. PubMed ID: 28110880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.