These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22092372)

  • 1. Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets.
    Mukhopadhyay S; Nair S; Ghosh S
    FEMS Microbiol Rev; 2012 Mar; 36(2):463-85. PubMed ID: 22092372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genes and regulatory networks involved in persistence of Mycobacterium tuberculosis.
    Wang X; Wang H; Xie J
    Sci China Life Sci; 2011 Apr; 54(4):300-10. PubMed ID: 21267668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of drug resistance in Mycobacterium tuberculosis.
    Zhang Y; Yew WW
    Int J Tuberc Lung Dis; 2009 Nov; 13(11):1320-30. PubMed ID: 19861002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guanosine triphosphatases as novel therapeutic targets in tuberculosis.
    Rajni ; Meena LS
    Int J Infect Dis; 2010 Aug; 14(8):e682-7. PubMed ID: 20207570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New drug targets for Mycobacterium tuberculosis.
    Chopra P; Meena LS; Singh Y
    Indian J Med Res; 2003 Jan; 117():1-9. PubMed ID: 12866819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL5 efflux system.
    Milano A; Pasca MR; Provvedi R; Lucarelli AP; Manina G; Ribeiro AL; Manganelli R; Riccardi G
    Tuberculosis (Edinb); 2009 Jan; 89(1):84-90. PubMed ID: 18851927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs.
    Almeida Da Silva PE; Palomino JC
    J Antimicrob Chemother; 2011 Jul; 66(7):1417-30. PubMed ID: 21558086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PhoP, a key player in Mycobacterium tuberculosis virulence.
    Ryndak M; Wang S; Smith I
    Trends Microbiol; 2008 Nov; 16(11):528-34. PubMed ID: 18835713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of glycans and glycoproteins in disease development by Mycobacterium tuberculosis.
    Sonawane A; Mohanty S; Jagannathan L; Bekolay A; Banerjee S
    Crit Rev Microbiol; 2012 Aug; 38(3):250-66. PubMed ID: 22324751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs.
    Gupta AK; Katoch VM; Chauhan DS; Sharma R; Singh M; Venkatesan K; Sharma VD
    Microb Drug Resist; 2010 Mar; 16(1):21-8. PubMed ID: 20001742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New genetic approaches shed light on TB virulence.
    Murry JP; Rubin EJ
    Trends Microbiol; 2005 Aug; 13(8):366-72. PubMed ID: 15982889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profiling of Mycobacterium tuberculosis gene expression during human macrophage infection: upregulation of the alternative sigma factor G, a group of transcriptional regulators, and proteins with unknown function.
    Cappelli G; Volpe E; Grassi M; Liseo B; Colizzi V; Mariani F
    Res Microbiol; 2006 Jun; 157(5):445-55. PubMed ID: 16483748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extra and intracellular expression of Mycobacterium tuberculosis genes.
    Smith I; Dussurget O; Rodriguez GM; Timm J; Gomez M; Dubnau J; Gold B; Manganelli R
    Tuber Lung Dis; 1998; 79(2):91-7. PubMed ID: 10645446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction topology of Mycobacterium tuberculosis genes response to capreomycin and novel clues for more drug targets.
    Zheng F; Xie J
    J Cell Biochem; 2011 Oct; 112(10):2716-20. PubMed ID: 21678479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of anthranilate synthase component I (TrpE) from Mycobacterium tuberculosis H37Rv.
    Lin X; Xu S; Yang Y; Wu J; Wang H; Shen H; Wang H
    Protein Expr Purif; 2009 Mar; 64(1):8-15. PubMed ID: 18952181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing the interaction of pathogens with the host immune system.
    Jayachandran R; Scherr N; Pieters J
    Immunol Lett; 2009 Feb; 122(2):112-4. PubMed ID: 19135088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development.
    Le Chevalier F; Cascioferro A; Majlessi L; Herrmann JL; Brosch R
    Future Microbiol; 2014; 9(8):969-85. PubMed ID: 25302954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimycobacterial activity of usnic acid against resistant and susceptible strains of Mycobacterium tuberculosis and non-tuberculous mycobacteria.
    Ramos DF; Almeida da Silva PE
    Pharm Biol; 2010 Mar; 48(3):260-3. PubMed ID: 20645810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.