These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 22092374)
1. Defined electrical stimulation emphasizing excitability for the development and testing of engineered skeletal muscle. Khodabukus A; Baar K Tissue Eng Part C Methods; 2012 May; 18(5):349-57. PubMed ID: 22092374 [TBL] [Abstract][Full Text] [Related]
2. Effect of stimulation frequency on force, net power output, and fatigue in mouse soleus muscle in vitro. Vassilakos G; James RS; Cox VM Can J Physiol Pharmacol; 2009 Mar; 87(3):203-10. PubMed ID: 19295661 [TBL] [Abstract][Full Text] [Related]
3. Influence of electrical stimulation frequency on skeletal muscle force and fatigue. Dreibati B; Lavet C; Pinti A; Poumarat G Ann Phys Rehabil Med; 2010 May; 53(4):266-71, 271-7. PubMed ID: 20430713 [TBL] [Abstract][Full Text] [Related]
4. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells. Sato M; Ito A; Kawabe Y; Nagamori E; Kamihira M J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045 [TBL] [Abstract][Full Text] [Related]
5. Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation. Ito A; Yamamoto Y; Sato M; Ikeda K; Yamamoto M; Fujita H; Nagamori E; Kawabe Y; Kamihira M Sci Rep; 2014 Apr; 4():4781. PubMed ID: 24759171 [TBL] [Abstract][Full Text] [Related]
6. [The role of the mitochondrial permeability transition pore in the development of skeletal muscle fatigue in dogs]. Bohuslavs'kyĭ AIu; Dmytriieva AV; Sahach VF Fiziol Zh (1994); 2004; 50(5):3-10. PubMed ID: 15693291 [TBL] [Abstract][Full Text] [Related]
8. [Effect of nitric oxide on the efficiency of oxygen consumption by the working skeletal muscle in fatigue]. Bohuslavs'kyĭ AIu; Dmytriieva AV; Sahach VF Fiziol Zh (1994); 2005; 51(1):33-42. PubMed ID: 15801198 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the relationship between stimulus parameters and a human muscle contraction force during stimulation of the gastrocnemius muscle. Kaczmarek P; Huber J; Lisiński P; Witkowska A; Kasiński A Artif Organs; 2010 Feb; 34(2):126-35. PubMed ID: 19817731 [TBL] [Abstract][Full Text] [Related]
10. A novel bioreactor for stimulating skeletal muscle in vitro. Donnelly K; Khodabukus A; Philp A; Deldicque L; Dennis RG; Baar K Tissue Eng Part C Methods; 2010 Aug; 16(4):711-8. PubMed ID: 19807268 [TBL] [Abstract][Full Text] [Related]
11. M wave and H-reflex of soleus muscle before and after electrical muscle stimulation in healthy subjects. Tanino Y; Daikuya S; Nishimori T; Takasaki K; Suzuki T Electromyogr Clin Neurophysiol; 2003 Sep; 43(6):381-4. PubMed ID: 14535052 [TBL] [Abstract][Full Text] [Related]
12. Effects of stimulation frequency, amplitude, and impulse width on muscle fatigue. Behringer M; Grützner S; Montag J; McCourt M; Ring M; Mester J Muscle Nerve; 2016 Apr; 53(4):608-16. PubMed ID: 26335028 [TBL] [Abstract][Full Text] [Related]
13. Effects of stimulation frequency and pulse duration on fatigue and metabolic cost during a single bout of neuromuscular electrical stimulation. Gondin J; Giannesini B; Vilmen C; Dalmasso C; le Fur Y; Cozzone PJ; Bendahan D Muscle Nerve; 2010 May; 41(5):667-78. PubMed ID: 20082417 [TBL] [Abstract][Full Text] [Related]
14. Maximal versus submaximal intensity stimulation with variable patterns. Doucet BM; Griffin L Muscle Nerve; 2008 Jun; 37(6):770-7. PubMed ID: 18335483 [TBL] [Abstract][Full Text] [Related]
15. Force output during fatigue with progressively increasing stimulation frequency. Griffin L; Jun BG; Covington C; Doucet BM J Electromyogr Kinesiol; 2008 Jun; 18(3):426-33. PubMed ID: 17208012 [TBL] [Abstract][Full Text] [Related]
16. Treadmill but not wheel running improves fatigue resistance of isolated extensor digitorum longus muscle in mice. Jeneson JA; de Snoo MW; Verlinden NA; Joosten BJ; Doornenbal A; Schot A; Everts ME Acta Physiol (Oxf); 2007 Jun; 190(2):151-61. PubMed ID: 17394571 [TBL] [Abstract][Full Text] [Related]
17. Optimizing the structure and contractility of engineered skeletal muscle thin films. Sun Y; Duffy R; Lee A; Feinberg AW Acta Biomater; 2013 Aug; 9(8):7885-94. PubMed ID: 23632372 [TBL] [Abstract][Full Text] [Related]
18. Regulation of C2C12 Differentiation and Control of the Beating Dynamics of Contractile Cells for a Muscle-Driven Biosyncretic Crawler by Electrical Stimulation. Liu L; Zhang C; Wang W; Xi N; Wang Y Soft Robot; 2018 Dec; 5(6):748-760. PubMed ID: 30277855 [TBL] [Abstract][Full Text] [Related]
19. Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters. Thrasher A; Graham GM; Popovic MR Artif Organs; 2005 Jun; 29(6):453-8. PubMed ID: 15926981 [TBL] [Abstract][Full Text] [Related]
20. Quadriceps fatigue caused by catchlike-inducing trains is not altered in old age. Allman BL; Cheng AJ; Rice CL Muscle Nerve; 2004 Dec; 30(6):743-51. PubMed ID: 15468338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]