These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 22092374)

  • 21. A mathematical model that predicts the force-frequency relationship of human skeletal muscle.
    Ding J; Wexler AS; Binder-Macleod SA
    Muscle Nerve; 2002 Oct; 26(4):477-85. PubMed ID: 12362412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of a combined mechanical stimulation protocol: Value for skeletal muscle tissue engineering.
    Boonen KJ; Langelaan ML; Polak RB; van der Schaft DW; Baaijens FP; Post MJ
    J Biomech; 2010 May; 43(8):1514-21. PubMed ID: 20189177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle.
    Khodabukus A; Madden L; Prabhu NK; Koves TR; Jackman CP; Muoio DM; Bursac N
    Biomaterials; 2019 Apr; 198():259-269. PubMed ID: 30180985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fatigue response of rat medial longissimus muscles induced with electrical stimulation at various work/rest ratios.
    Wawrow PT; Jakobi JM; Cavanaugh JM
    J Electromyogr Kinesiol; 2011 Dec; 21(6):939-46. PubMed ID: 21925902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The optimal stimulation pattern for skeletal muscle is dependent on muscle length.
    Mela P; Veltink PH; Huijing PA; Salmons S; Jarvis JC
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):85-93. PubMed ID: 12236451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Central fatigue and motor cortical excitability during repeated shortening and lengthening actions.
    Löscher WN; Nordlund MM
    Muscle Nerve; 2002 Jun; 25(6):864-72. PubMed ID: 12115976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation.
    Kesar T; Binder-Macleod S
    Exp Physiol; 2006 Nov; 91(6):967-76. PubMed ID: 16873456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redetermination of the optimal stimulation intensity modifies resting H-reflex recovery after a sustained moderate-intensity muscle contraction.
    Rupp T; Girard O; Perrey S
    Muscle Nerve; 2010 May; 41(5):642-50. PubMed ID: 19918764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulse energy as a reliable reference for twitch forces induced by transcutaneous neuromuscular electrical stimulation.
    Chen CF; Chen WS; Chou LW; Chang YJ; Chen SC; Kuo TS; Lai JS
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):574-83. PubMed ID: 22481833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In isolated skeletal muscle, excitation may increase extracellular K+ 10-fold; how can contractility be maintained?
    Clausen T
    Exp Physiol; 2011 Mar; 96(3):356-68. PubMed ID: 21123362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interleaved, multisite electrical stimulation of cat sciatic nerve produces fatigue-resistant, ripple-free motor responses.
    McDonnall D; Clark GA; Normann RA
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):208-15. PubMed ID: 15218935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A predictive fatigue model--I: Predicting the effect of stimulation frequency and pattern on fatigue.
    Ding J; Wexler AS; Binder-Macleod SA
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):48-58. PubMed ID: 12173739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of random modulation of functional electrical stimulation parameters on muscle fatigue.
    Graham GM; Thrasher TA; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):38-45. PubMed ID: 16562630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional evaluation of artificial skeletal muscle tissue constructs fabricated by a magnetic force-based tissue engineering technique.
    Yamamoto Y; Ito A; Fujita H; Nagamori E; Kawabe Y; Kamihira M
    Tissue Eng Part A; 2011 Jan; 17(1-2):107-14. PubMed ID: 20672996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of salbutamol on the contractile properties of human skeletal muscle before and after fatigue.
    Crivelli G; Millet GP; Gremion G; Borrani F
    Acta Physiol (Oxf); 2011 Oct; 203(2):311-20. PubMed ID: 21477068
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A predictive fatigue model--II: Predicting the effect of resting times on fatigue.
    Ding J; Wexler AS; Binder-Macleod SA
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):59-67. PubMed ID: 12173740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of burst frequency and duration of kilohertz-frequency alternating currents and of low-frequency pulsed currents on strength of contraction, muscle fatigue, and perceived discomfort.
    Laufer Y; Elboim M
    Phys Ther; 2008 Oct; 88(10):1167-76. PubMed ID: 18703676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of H reflex sensitivity with M wave alternation consequent to fatiguing contractions.
    Hwang IS; Huang CY; Wu PS; Chen YC; Wang CH
    Int J Neurosci; 2008 Sep; 118(9):1317-30. PubMed ID: 18698513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EMG power spectrum and features of the superimposed M-wave during voluntary eccentric and concentric actions at different activation levels.
    Linnamo V; Strojnik V; Komi PV
    Eur J Appl Physiol; 2002 Apr; 86(6):534-40. PubMed ID: 11944102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fatigue of paralyzed and control thenar muscles induced by variable or constant frequency stimulation.
    Thomas CK; Griffin L; Godfrey S; Ribot-Ciscar E; Butler JE
    J Neurophysiol; 2003 Apr; 89(4):2055-64. PubMed ID: 12611940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.