These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 22092563)

  • 1. Cryptococcus neoformans suppresses the activation of bone marrow-derived dendritic cells stimulated with its own DNA, but not with DNA from other fungi.
    Yamamoto H; Abe Y; Miyazato A; Tanno D; Tanaka M; Miyasaka T; Ishii K; Kawakami K
    FEMS Immunol Med Microbiol; 2011 Dec; 63(3):363-72. PubMed ID: 22092563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deoxynucleic acids from Cryptococcus neoformans activate myeloid dendritic cells via a TLR9-dependent pathway.
    Nakamura K; Miyazato A; Xiao G; Hatta M; Inden K; Aoyagi T; Shiratori K; Takeda K; Akira S; Saijo S; Iwakura Y; Adachi Y; Ohno N; Suzuki K; Fujita J; Kaku M; Kawakami K
    J Immunol; 2008 Mar; 180(6):4067-74. PubMed ID: 18322216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toll-like receptor 9-dependent activation of myeloid dendritic cells by Deoxynucleic acids from Candida albicans.
    Miyazato A; Nakamura K; Yamamoto N; Mora-Montes HM; Tanaka M; Abe Y; Tanno D; Inden K; Gang X; Ishii K; Takeda K; Akira S; Saijo S; Iwakura Y; Adachi Y; Ohno N; Mitsutake K; Gow NA; Kaku M; Kawakami K
    Infect Immun; 2009 Jul; 77(7):3056-64. PubMed ID: 19433551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toll-like receptor 9-dependent activation of bone marrow-derived dendritic cells by URA5 DNA from Cryptococcus neoformans.
    Tanaka M; Ishii K; Nakamura Y; Miyazato A; Maki A; Abe Y; Miyasaka T; Yamamoto H; Akahori Y; Fue M; Takahashi Y; Kanno E; Maruyama R; Kawakami K
    Infect Immun; 2012 Feb; 80(2):778-86. PubMed ID: 22104112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of myeloid dendritic cells by deoxynucleic acids from Cordyceps sinensis via a Toll-like receptor 9-dependent pathway.
    Xiao G; Miyazato A; Abe Y; Zhang T; Nakamura K; Inden K; Tanaka M; Tanno D; Miyasaka T; Ishii K; Takeda K; Akira S; Saijo S; Iwakura Y; Adachi Y; Ohno N; Yamamoto N; Kunishima H; Hirakata Y; Kaku M; Kawakami K
    Cell Immunol; 2010; 263(2):241-50. PubMed ID: 20451901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limited contribution of Toll-like receptor 2 and 4 to the host response to a fungal infectious pathogen, Cryptococcus neoformans.
    Nakamura K; Miyagi K; Koguchi Y; Kinjo Y; Uezu K; Kinjo T; Akamine M; Fujita J; Kawamura I; Mitsuyama M; Adachi Y; Ohno N; Takeda K; Akira S; Miyazato A; Kaku M; Kawakami K
    FEMS Immunol Med Microbiol; 2006 Jun; 47(1):148-54. PubMed ID: 16706798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryptococcus neoformans activates bone marrow-derived conventional dendritic cells rather than plasmacytoid dendritic cells and down-regulates macrophages.
    Siegemund S; Alber G
    FEMS Immunol Med Microbiol; 2008 Apr; 52(3):417-27. PubMed ID: 18336384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific activated T cells regulate IL-12 production by human monocytes stimulated with Cryptococcus neoformans.
    Retini C; Casadevall A; Pietrella D; Monari C; Palazzetti B; Vecchiarelli A
    J Immunol; 1999 Feb; 162(3):1618-23. PubMed ID: 9973421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Cryptococcus neoformans cap10 and cap59 mutant strains, affected in glucuronoxylomannan synthesis, differentially activate human dendritic cells.
    Grijpstra J; Tefsen B; van Die I; de Cock H
    FEMS Immunol Med Microbiol; 2009 Nov; 57(2):142-50. PubMed ID: 19694810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptococcus neoformans inhibits nitric oxide synthesis caused by CpG-oligodeoxynucleotide-stimulated macrophages in a fashion independent of capsular polysaccharides.
    Xiao G; Miyazato A; Inden K; Nakamura K; Shiratori K; Nakagawa K; Miyazawa T; Suzuki K; Kaku M; Kawakami K
    Microbiol Immunol; 2008 Mar; 52(3):171-9. PubMed ID: 18402599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryptococcus neoformans inhibits nitric oxide production by murine peritoneal macrophages stimulated with interferon-gamma and lipopolysaccharide.
    Kawakami K; Zhang T; Qureshi MH; Saito A
    Cell Immunol; 1997 Aug; 180(1):47-54. PubMed ID: 9316638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous extract of Phyllanthus niruri (Euphorbiaceae) enhances the phenotypic and functional maturation of bone marrow-derived dendritic cells and their antigen-presentation function.
    Nworu CS; Akah PA; Okoye FB; Esimone CO
    Immunopharmacol Immunotoxicol; 2010 Sep; 32(3):393-401. PubMed ID: 20095802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungicidal activity of IFN-gamma-activated macrophages. Extracellular killing of Cryptococcus neoformans.
    Flesch IE; Schwamberger G; Kaufmann SH
    J Immunol; 1989 May; 142(9):3219-24. PubMed ID: 2496162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the activation profile of dendritic cells derived from the bone marrow of interleukin-12/interleukin-23-deficient mice.
    Bastos KR; de Deus Vieira de Moraes L; Zago CA; Marinho CR; Russo M; Alvarez JM; D'Império Lima MR
    Immunology; 2005 Apr; 114(4):499-506. PubMed ID: 15804287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TLR9 cooperates with TLR4 to increase IL-12 release by murine dendritic cells.
    Theiner G; Rössner S; Dalpke A; Bode K; Berger T; Gessner A; Lutz MB
    Mol Immunol; 2008 Jan; 45(1):244-52. PubMed ID: 17599410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opsonic requirements for dendritic cell-mediated responses to Cryptococcus neoformans.
    Kelly RM; Chen J; Yauch LE; Levitz SM
    Infect Immun; 2005 Jan; 73(1):592-8. PubMed ID: 15618199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dectin-2-mediated signaling triggered by the cell wall polysaccharides of Cryptococcus neoformans.
    Tanno D; Yokoyama R; Kawamura K; Kitai Y; Yuan X; Ishii K; De Jesus M; Yamamoto H; Sato K; Miyasaka T; Shimura H; Shibata N; Adachi Y; Ohno N; Yamasaki S; Kawakami K
    Microbiol Immunol; 2019 Dec; 63(12):500-512. PubMed ID: 31544981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel immunomodulatory effects of adiponectin on dendritic cell functions.
    Tsang JY; Li D; Ho D; Peng J; Xu A; Lamb J; Chen Y; Tam PK
    Int Immunopharmacol; 2011 May; 11(5):604-9. PubMed ID: 21094289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic BM-DC activation and immune induction by the oral vaccine vector Streptococcus gordonii and exogenous tumor necrosis factor.
    Mayer ML; Phillips CM; Stadnyk AW; Halperin SA; Lee SF
    Mol Immunol; 2009 May; 46(8-9):1883-91. PubMed ID: 19278729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cannabinoid treatment suppresses the T-helper cell-polarizing function of mouse dendritic cells stimulated with Legionella pneumophila infection.
    Lu T; Newton C; Perkins I; Friedman H; Klein TW
    J Pharmacol Exp Ther; 2006 Oct; 319(1):269-76. PubMed ID: 16837556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.