These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 22092834)

  • 21. Antagonism between Bacillus cereus and Pseudomonas fluorescens in planktonic systems and in biofilms.
    Simões M; Simoes LC; Pereira MO; Vieira MJ
    Biofouling; 2008; 24(5):339-49. PubMed ID: 18576180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effects of Aeromonas hydrophila biofilm on the drug resistance].
    Zhang J; Lu C
    Wei Sheng Wu Xue Bao; 2003 Aug; 43(4):498-502. PubMed ID: 16276926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of metabolite molecules produced by drinking water-isolated bacteria on their single and multispecies biofilms.
    Simões LC; Simões M; Vieira MJ
    Biofouling; 2011 Aug; 27(7):685-99. PubMed ID: 21732713
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chitynolytic bacteria in water and bottom sediments of two lakes of different trophy.
    Donderski W
    Acta Microbiol Pol; 1984; 33(2):163-70. PubMed ID: 6209933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Escherichia coli serotype O157:H7 retention on solid surfaces and peroxide resistance is enhanced by dual-strain biofilm formation.
    Uhlich GA; Rogers DP; Mosier DA
    Foodborne Pathog Dis; 2010 Aug; 7(8):935-43. PubMed ID: 20367070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Replication of Legionella pneumophila in biofilms of water distribution pipes.
    Declerck P; Behets J; Margineanu A; van Hoef V; De Keersmaecker B; Ollevier F
    Microbiol Res; 2009; 164(6):593-603. PubMed ID: 17644359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of Aeromonas hydrophila in a drinking-water distribution system: a field and pilot study.
    Chauret C; Volk C; Creason R; Jarosh J; Robinson J; Warnes C
    Can J Microbiol; 2001 Aug; 47(8):782-6. PubMed ID: 11575507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.
    Brandl MT; Carter MQ; Parker CT; Chapman MR; Huynh S; Zhou Y
    PLoS One; 2011; 6(10):e25553. PubMed ID: 22003399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biofilm formation and interactions of bacterial strains found in wastewater treatment systems.
    Andersson S; Kuttuva Rajarao G; Land CJ; Dalhammar G
    FEMS Microbiol Lett; 2008 Jun; 283(1):83-90. PubMed ID: 18422628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria.
    Castonguay MH; van der Schaaf S; Koester W; Krooneman J; van der Meer W; Harmsen H; Landini P
    Res Microbiol; 2006 Jun; 157(5):471-8. PubMed ID: 16376056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of chitinolytic enzymes by a strain (BM17) of Paenibacillus pabuli isolated from crab shells samples collected in the east sector of central Tyrrhenian Sea.
    Juarez-Jimenez B; Rodelas B; Martinez-Toledo MV; Gonzalez-Lopez J; Crognale S; Gallo AM; Pesciaroli C; Fenice M
    Int J Biol Macromol; 2008 Jul; 43(1):27-31. PubMed ID: 18076982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flavobacterium cauense sp. nov., isolated from sediment of a eutrophic lake.
    Qu JH; Yuan HL; Li HF; Deng CP
    Int J Syst Evol Microbiol; 2009 Nov; 59(Pt 11):2666-9. PubMed ID: 19625416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus.
    Entcheva-Dimitrov P; Spormann AM
    J Bacteriol; 2004 Dec; 186(24):8254-66. PubMed ID: 15576774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global impact of Vibrio cholerae interactions with chitin.
    Pruzzo C; Vezzulli L; Colwell RR
    Environ Microbiol; 2008 Jun; 10(6):1400-10. PubMed ID: 18312392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation.
    Shime-Hattori A; Iida T; Arita M; Park KS; Kodama T; Honda T
    FEMS Microbiol Lett; 2006 Nov; 264(1):89-97. PubMed ID: 17020553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The isolation and characterization of a rumen chitinolytic bacterium.
    Kopecný J; Hodrová B; Stewart CS
    Lett Appl Microbiol; 1996 Sep; 23(3):195-8. PubMed ID: 8862026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutations in Flavobacterium johnsoniae secDF result in defects in gliding motility and chitin utilization.
    Nelson SS; McBride MJ
    J Bacteriol; 2006 Jan; 188(1):348-51. PubMed ID: 16352853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Grazing resistant freshwater bacteria profit from chitin and cell-wall-derived organic carbon.
    Eckert EM; Baumgartner M; Huber IM; Pernthaler J
    Environ Microbiol; 2013 Jul; 15(7):2019-30. PubMed ID: 23413977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utilization of oligo- and polysaccharides at microgram-per-litre levels in freshwater by Flavobacterium johnsoniae.
    Sack EL; van der Wielen PW; van der Kooij D
    J Appl Microbiol; 2010 Apr; 108(4):1430-40. PubMed ID: 19804538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of osmotic stresses on the biofilm formation, immunodetection, and morphology of Aeromonas hydrophila.
    Wang W; Cao Y; Li J; Lu S; Ge H; Pan S; Pan X; Wang L
    Microbiol Res; 2023 Apr; 269():127301. PubMed ID: 36689842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.