BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 22093100)

  • 1. Cryptococcus neoformans Ca(2+) homeostasis requires a chloride channel/antiporter Clc1 in JEC21, but not in H99.
    Li D; Zhang X; Li Z; Yang J; Pan J; Zhu X
    FEMS Yeast Res; 2012 Feb; 12(1):69-77. PubMed ID: 22093100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The vacuolar Ca²(+) exchanger Vcx1 is involved in calcineurin-dependent Ca²(+) tolerance and virulence in Cryptococcus neoformans.
    Kmetzsch L; Staats CC; Simon E; Fonseca FL; de Oliveira DL; Sobrino L; Rodrigues J; Leal AL; Nimrichter L; Rodrigues ML; Schrank A; Vainstein MH
    Eukaryot Cell; 2010 Nov; 9(11):1798-805. PubMed ID: 20889719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of virulence factors, carbon utilization and virulence by SNF1 in Cryptococcus neoformans JEC21 and divergent actions of SNF1 between cryptococcal strains.
    Yang J; Li D; Liu X; Pan J; Yan B; Zhu X
    Fungal Genet Biol; 2010 Dec; 47(12):994-1000. PubMed ID: 20719250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloride channel-dependent copper acquisition of laccase in the basidiomycetous fungus Cryptococcus neoformans.
    Zhu C; Jiang N; Xiao D; Pan J; Zhu X
    Sci China Life Sci; 2010 Jan; 53(1):125-130. PubMed ID: 20596964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of copper homeostasis by Cuf1 associates with its subcellular localization in the pathogenic yeast Cryptococcus neoformans H99.
    Jiang N; Liu X; Yang J; Li Z; Pan J; Zhu X
    FEMS Yeast Res; 2011 Aug; 11(5):440-8. PubMed ID: 21489137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory diversity of TUP1 in Cryptococcus neoformans.
    Lee H; Chang YC; Varma A; Kwon-Chung KJ
    Eukaryot Cell; 2009 Dec; 8(12):1901-8. PubMed ID: 19820119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium Binding Protein Ncs1 Is Calcineurin Regulated in Cryptococcus neoformans and Essential for Cell Division and Virulence.
    Squizani ED; Reuwsaat JCV; Lev S; Motta H; Sperotto J; Kaufman-Francis K; Desmarini D; Vainstein MH; Staats CC; Djordjevic JT; Kmetzsch L
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32907953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cch1 mediates calcium entry in Cryptococcus neoformans and is essential in low-calcium environments.
    Liu M; Du P; Heinrich G; Cox GM; Gelli A
    Eukaryot Cell; 2006 Oct; 5(10):1788-96. PubMed ID: 16950930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the chloride channel of Fusarium oxysporum on extracellular laccase activity and virulence on tomato plants.
    Cañero DC; Roncero MIG
    Microbiology (Reading); 2008 May; 154(Pt 5):1474-1481. PubMed ID: 18451056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Snf1/AMPK protein kinase modulates cell wall integrity in the human pathogenic yeast cryptococcus neoformans.
    Yang J; Li D; Pan J; Zhu X
    Wei Sheng Wu Xue Bao; 2011 Jun; 51(6):740-6. PubMed ID: 21866697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins.
    Scheel O; Zdebik AA; Lourdel S; Jentsch TJ
    Nature; 2005 Jul; 436(7049):424-7. PubMed ID: 16034422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CLC 'chloride channel' family: revelations from prokaryotes.
    Matulef K; Maduke M
    Mol Membr Biol; 2007; 24(5-6):342-50. PubMed ID: 17710638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryptococcus neoformans virulence gene discovery through insertional mutagenesis.
    Idnurm A; Reedy JL; Nussbaum JC; Heitman J
    Eukaryot Cell; 2004 Apr; 3(2):420-9. PubMed ID: 15075272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of a VPS41 homologue in starvation response, intracellular survival and virulence of Cryptococcus neoformans.
    Liu X; Hu G; Panepinto J; Williamson PR
    Mol Microbiol; 2006 Sep; 61(5):1132-46. PubMed ID: 16879414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell wall integrity is dependent on the PKC1 signal transduction pathway in Cryptococcus neoformans.
    Gerik KJ; Donlin MJ; Soto CE; Banks AM; Banks IR; Maligie MA; Selitrennikoff CP; Lodge JK
    Mol Microbiol; 2005 Oct; 58(2):393-408. PubMed ID: 16194228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans.
    Panepinto J; Komperda K; Frases S; Park YD; Djordjevic JT; Casadevall A; Williamson PR
    Mol Microbiol; 2009 Mar; 71(5):1165-76. PubMed ID: 19210702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A CLC chloride channel plays an essential role in copper homeostasis in Aspergillus nidulans at increased extracellular copper concentrations.
    Oddon DM; Diatloff E; Roberts SK
    Biochim Biophys Acta; 2007 Oct; 1768(10):2466-77. PubMed ID: 17601488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal transduction pathways regulating differentiation and pathogenicity of Cryptococcus neoformans.
    Alspaugh JA; Perfect JR; Heitman J
    Fungal Genet Biol; 1998 Oct; 25(1):1-14. PubMed ID: 9806801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis.
    Mylonakis E; Moreno R; El Khoury JB; Idnurm A; Heitman J; Calderwood SB; Ausubel FM; Diener A
    Infect Immun; 2005 Jul; 73(7):3842-50. PubMed ID: 15972469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The CRZ1/SP1-like gene links survival under limited aeration, cell integrity and biofilm formation in the pathogenic yeast Cryptococcus neoformans.
    Moranova Z; Virtudazo E; Hricova K; Ohkusu M; Kawamoto S; Husickova V; Raclavsky V
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2014 Jun; 158(2):212-20. PubMed ID: 23640031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.