These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22093299)

  • 41. All-passive pixel super-resolution of time-stretch imaging.
    Chan AC; Ng HC; Bogaraju SC; So HK; Lam EY; Tsia KK
    Sci Rep; 2017 Mar; 7():44608. PubMed ID: 28303936
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Empirical gradient threshold technique for automated segmentation across image modalities and cell lines.
    Chalfoun J; Majurski M; Peskin A; Breen C; Bajcsy P; Brady M
    J Microsc; 2015 Oct; 260(1):86-99. PubMed ID: 26046924
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The microcomputer and image analysis in diagnostic pathology.
    Jarvis LR
    Microsc Res Tech; 1992 Jun; 21(4):292-9. PubMed ID: 1638050
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient processing and analysis of large-scale light-sheet microscopy data.
    Amat F; Höckendorf B; Wan Y; Lemon WC; McDole K; Keller PJ
    Nat Protoc; 2015 Nov; 10(11):1679-96. PubMed ID: 26426501
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graphics processing unit-based high-frame-rate color Doppler ultrasound processing.
    Chang LW; Hsu KH; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1856-60. PubMed ID: 19811988
    [TBL] [Abstract][Full Text] [Related]  

  • 46. FPGA based system for automatic cDNA microarray image processing.
    Belean B; Borda M; Le Gal B; Terebes R
    Comput Med Imaging Graph; 2012 Jul; 36(5):419-29. PubMed ID: 22424667
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A fast, fully automated cell segmentation algorithm for high-throughput and high-content screening.
    Fenistein D; Lenseigne B; Christophe T; Brodin P; Genovesio A
    Cytometry A; 2008 Oct; 73(10):958-64. PubMed ID: 18752283
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Scheimpflug camera in the quantitative assessment of reproducibility of high-speed corneal deformation during intraocular pressure measurement.
    Koprowski R; Ambrósio R; Reisdorf S
    J Biophotonics; 2015 Nov; 8(11-12):968-78. PubMed ID: 25623926
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improving reliability of live/dead cell counting through automated image mosaicing.
    Piccinini F; Tesei A; Paganelli G; Zoli W; Bevilacqua A
    Comput Methods Programs Biomed; 2014 Dec; 117(3):448-63. PubMed ID: 25438936
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enabling on-demand real-time functional MRI analysis using grid technology.
    Bagarinao E; Matsuo K; Tanaka Y; Sarmenta LF; Nakai T
    Methods Inf Med; 2005; 44(5):665-73. PubMed ID: 16400375
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adaptive fluorescence microscopy by online feedback image analysis.
    Tischer C; Hilsenstein V; Hanson K; Pepperkok R
    Methods Cell Biol; 2014; 123():489-503. PubMed ID: 24974044
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.
    Zhao W; Wang C; Chen H; Chen M; Yang S
    J Biomed Opt; 2018 Apr; 23(4):1-8. PubMed ID: 29623704
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deep imaging flow cytometry.
    Huang K; Matsumura H; Zhao Y; Herbig M; Yuan D; Mineharu Y; Harmon J; Findinier J; Yamagishi M; Ohnuki S; Nitta N; Grossman AR; Ohya Y; Mikami H; Isozaki A; Goda K
    Lab Chip; 2022 Mar; 22(5):876-889. PubMed ID: 35142325
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A practical guide to intelligent image-activated cell sorting.
    Isozaki A; Mikami H; Hiramatsu K; Sakuma S; Kasai Y; Iino T; Yamano T; Yasumoto A; Oguchi Y; Suzuki N; Shirasaki Y; Endo T; Ito T; Hiraki K; Yamada M; Matsusaka S; Hayakawa T; Fukuzawa H; Yatomi Y; Arai F; Di Carlo D; Nakagawa A; Hoshino Y; Hosokawa Y; Uemura S; Sugimura T; Ozeki Y; Nitta N; Goda K
    Nat Protoc; 2019 Aug; 14(8):2370-2415. PubMed ID: 31278398
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Image analysis driven single-cell analytics for systems microbiology.
    Balomenos AD; Tsakanikas P; Aspridou Z; Tampakaki AP; Koutsoumanis KP; Manolakos ES
    BMC Syst Biol; 2017 Apr; 11(1):43. PubMed ID: 28376782
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deep Learning-Based HCS Image Analysis for the Enterprise.
    Steigele S; Siegismund D; Fassler M; Kustec M; Kappler B; Hasaka T; Yee A; Brodte A; Heyse S
    SLAS Discov; 2020 Aug; 25(7):812-821. PubMed ID: 32432952
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biological Breakdown of Sports in Athletics Based on Multimedia Image Acquisition Techniques.
    Sun P; Zhang B; Chen Q; Guo J
    Comput Intell Neurosci; 2022; 2022():3497942. PubMed ID: 35392036
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spotsizer: High-throughput quantitative analysis of microbial growth.
    Bischof L; Převorovský M; Rallis C; Jeffares DC; Arzhaeva Y; Bähler J
    Biotechniques; 2016 Oct; 61(4):191-201. PubMed ID: 27712582
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fully automated cellular-resolution vertebrate screening platform with parallel animal processing.
    Chang TY; Pardo-Martin C; Allalou A; Wählby C; Yanik MF
    Lab Chip; 2012 Feb; 12(4):711-6. PubMed ID: 22159032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automation in single-particle electron microscopy connecting the pieces.
    Lyumkis D; Moeller A; Cheng A; Herold A; Hou E; Irving C; Jacovetty EL; Lau PW; Mulder AM; Pulokas J; Quispe JD; Voss NR; Potter CS; Carragher B
    Methods Enzymol; 2010; 483():291-338. PubMed ID: 20888480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.