These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

556 related articles for article (PubMed ID: 22093704)

  • 1. Pyrolysis of polyolefins for increasing the yield of monomers' recovery.
    Donaj PJ; Kaminsky W; Buzeto F; Yang W
    Waste Manag; 2012 May; 32(5):840-6. PubMed ID: 22093704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on thermal co-pyrolysis of jatropha deoiled cake and polyolefins.
    Rotliwala YC; Parikh PA
    Waste Manag Res; 2011 Dec; 29(12):1251-61. PubMed ID: 21628346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalyst-mediated pyrolysis of waste plastics: tuning yield, composition, and nature of pyrolysis oil.
    Kanattukara BV; Singh G; Sarkar P; Chopra A; Singh D; Mondal S; Kapur GS; Ramakumar SSV
    Environ Sci Pollut Res Int; 2023 May; 30(24):64994-65010. PubMed ID: 37074603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.
    Adrados A; de Marco I; Caballero BM; López A; Laresgoiti MF; Torres A
    Waste Manag; 2012 May; 32(5):826-32. PubMed ID: 21795037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fuel production by cracking of polyolefins pyrolysis waxes under fluid catalytic cracking (FCC) operating conditions.
    Rodríguez E; Gutiérrez A; Palos R; Vela FJ; Arandes JM; Bilbao J
    Waste Manag; 2019 Jun; 93():162-172. PubMed ID: 31235053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Waste catalysts for waste polymer.
    Salmiaton A; Garforth A
    Waste Manag; 2007; 27(12):1891-6. PubMed ID: 17084608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor.
    Zhang H; Xiao R; Nie J; Jin B; Shao S; Xiao G
    Bioresour Technol; 2015 Sep; 192():68-74. PubMed ID: 26011693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycling of polymer waste with fluid catalytic cracking catalysts.
    Ali S; Garforth A; Fakhru'l-Razi A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(6):1145-54. PubMed ID: 16760091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of hazardous plastic wastes into useful chemical products.
    Siddiqui MN
    J Hazard Mater; 2009 Aug; 167(1-3):728-35. PubMed ID: 19201536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals.
    Saeaung K; Phusunti N; Phetwarotai W; Assabumrungrat S; Cheirsilp B
    Waste Manag; 2021 May; 127():101-111. PubMed ID: 33932851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP).
    Achilias DS; Roupakias C; Megalokonomos P; Lappas AA; Antonakou EV
    J Hazard Mater; 2007 Nov; 149(3):536-42. PubMed ID: 17681427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal pyrolysis of waste versus virgin polyolefin feedstocks: The role of pressure, temperature and waste composition.
    Abbas-Abadi MS; Kusenberg M; Zayoud A; Roosen M; Vermeire F; Madanikashani S; Kuzmanović M; Parvizi B; Kresovic U; De Meester S; Van Geem KM
    Waste Manag; 2023 Jun; 165():108-118. PubMed ID: 37119685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrolysis of low density polyethylene waste in subcritical water optimized by response surface methodology.
    Wong SL; Ngadi N; Amin NA; Abdullah TA; Inuwa IM
    Environ Technol; 2016; 37(2):245-54. PubMed ID: 26150081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave pyrolysis of polypropylene, and high-density polyethylene, and catalytic gasification of waste coffee pods to hydrogen-rich gas.
    de Sousa Felix M; Hagare D; Tahmasebi A; Sathasivan A; Arora M
    Waste Manag; 2024 Oct; 187():306-316. PubMed ID: 39089146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-pyrolysis of polypropylene waste with Brazilian heavy oil.
    Assumpção LC; Carbonell MM; Marques MR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(5):461-4. PubMed ID: 21409698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal decomposition of expanded polystyrene in a pebble bed reactor to get higher liquid fraction yield at low temperatures.
    Chauhan RS; Gopinath S; Razdan P; Delattre C; Nirmala GS; Natarajan R
    Waste Manag; 2008 Nov; 28(11):2140-5. PubMed ID: 18032014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of hydrogen-rich fuel gas from waste plastics using continuous plasma pyrolysis reactor.
    Bhatt KP; Patel S; Upadhyay DS; Patel RN
    J Environ Manage; 2024 Apr; 356():120446. PubMed ID: 38484595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils.
    Breyer S; Mekhitarian L; Rimez B; Haut B
    Waste Manag; 2017 Feb; 60():363-374. PubMed ID: 28063835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.
    Hwang IH; Kobayashi J; Kawamoto K
    Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.