These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 22094245)

  • 1. Biomimetic tissues on a chip for drug discovery.
    Ghaemmaghami AM; Hancock MJ; Harrington H; Kaji H; Khademhosseini A
    Drug Discov Today; 2012 Feb; 17(3-4):173-81. PubMed ID: 22094245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.
    Mohammadi MH; Heidary Araghi B; Beydaghi V; Geraili A; Moradi F; Jafari P; Janmaleki M; Valente KP; Akbari M; Sanati-Nezhad A
    Adv Healthc Mater; 2016 Oct; 5(19):2459-2480. PubMed ID: 27548388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic lumen-based systems for advancing tubular organ modeling.
    Virumbrales-Muñoz M; Ayuso JM; Gong MM; Humayun M; Livingston MK; Lugo-Cintrón KM; McMinn P; Álvarez-García YR; Beebe DJ
    Chem Soc Rev; 2020 Sep; 49(17):6402-6442. PubMed ID: 32760967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies.
    Ahadian S; Civitarese R; Bannerman D; Mohammadi MH; Lu R; Wang E; Davenport-Huyer L; Lai B; Zhang B; Zhao Y; Mandla S; Korolj A; Radisic M
    Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 29034591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting lab-on-a-chip technology for drug discovery.
    Neuži P; Giselbrecht S; Länge K; Huang TJ; Manz A
    Nat Rev Drug Discov; 2012 Aug; 11(8):620-32. PubMed ID: 22850786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organ-on-a-Chip Systems: Microengineering to Biomimic Living Systems.
    Zheng F; Fu F; Cheng Y; Wang C; Zhao Y; Gu Z
    Small; 2016 May; 12(17):2253-82. PubMed ID: 26901595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Organ-on-a-Chip Technology for Advancement of Drug Development and Toxicology.
    Caplin JD; Granados NG; James MR; Montazami R; Hashemi N
    Adv Healthc Mater; 2015 Jul; 4(10):1426-50. PubMed ID: 25820344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microphysiological Constructs and Systems: Biofabrication Tactics, Biomimetic Evaluation Approaches, and Biomedical Applications.
    Zhang S; Xu G; Wu J; Liu X; Fan Y; Chen J; Wallace G; Gu Q
    Small Methods; 2024 Jan; 8(1):e2300685. PubMed ID: 37798902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mimicking and surpassing the xenograft model with cancer-on-chip technology.
    Komen J; van Neerven SM; van den Berg A; Vermeulen L; van der Meer AD
    EBioMedicine; 2021 Apr; 66():103303. PubMed ID: 33773183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Next generation human skin constructs as advanced tools for drug development.
    Abaci HE; Guo Z; Doucet Y; Jacków J; Christiano A
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1657-1668. PubMed ID: 28592171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Biomaterials and Biostructures Based On Microfluidic Manipulation.
    Zheng W; Xie R; Liang X; Liang Q
    Small; 2022 Apr; 18(16):e2105867. PubMed ID: 35072338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Cell Printing of Tissue/Organ-Mimicking Constructs for Therapeutic and Drug Testing Applications.
    Kim J; Kong JS; Han W; Kim BS; Cho DW
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33092184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfabricated mammalian organ systems and their integration into models of whole animals and humans.
    Sung JH; Esch MB; Prot JM; Long CJ; Smith A; Hickman JJ; Shuler ML
    Lab Chip; 2013 Apr; 13(7):1201-12. PubMed ID: 23388858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-microfluidics: biomaterials and biomimetic designs.
    Domachuk P; Tsioris K; Omenetto FG; Kaplan DL
    Adv Mater; 2010 Jan; 22(2):249-60. PubMed ID: 20217686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment.
    Tsai HF; Trubelja A; Shen AQ; Bao G
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28637915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic cell culture models for tissue engineering.
    Inamdar NK; Borenstein JT
    Curr Opin Biotechnol; 2011 Oct; 22(5):681-9. PubMed ID: 21723720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiologically relevant organs on chips.
    Yum K; Hong SG; Healy KE; Lee LP
    Biotechnol J; 2014 Jan; 9(1):16-27. PubMed ID: 24357624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Textile Processes for Engineering Tissues with Biomimetic Architectures and Properties.
    Fallahi A; Khademhosseini A; Tamayol A
    Trends Biotechnol; 2016 Sep; 34(9):683-685. PubMed ID: 27499277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Founder's award to Antonios G. Mikos, Ph.D., 2011 Society for Biomaterials annual meeting and exposition, Orlando, Florida, April 13-16, 2011: Bones to biomaterials and back again--20 years of taking cues from nature to engineer synthetic polymer scaffolds.
    Kretlow JD; Mikos AG
    J Biomed Mater Res A; 2011 Sep; 98(3):323-31. PubMed ID: 21714068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.