BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22094324)

  • 1. Diffuse optical imaging and spectroscopy of the breast: a brief outline of history and perspectives.
    Taroni P
    Photochem Photobiol Sci; 2012 Feb; 11(2):241-50. PubMed ID: 22094324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADINE: new approaches to detecting breast cancer by sequential μm-wavelength imaging with the aid of novel frequency analysis techniques.
    Joro R; Dastidar P; Iivonen V; Ylänen H; Soimakallio S
    J Med Eng Technol; 2012 Jul; 36(5):251-60. PubMed ID: 22512737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study.
    Taroni P; Paganoni AM; Ieva F; Pifferi A; Quarto G; Abbate F; Cassano E; Cubeddu R
    Sci Rep; 2017 Jan; 7():40683. PubMed ID: 28091596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography.
    Wang J; Jiang S; Li Z; diFlorio-Alexander RM; Barth RJ; Kaufman PA; Pogue BW; Paulsen KD
    Med Phys; 2010 Jul; 37(7):3715-24. PubMed ID: 20831079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions.
    Taroni P; Torricelli A; Spinelli L; Pifferi A; Arpaia F; Danesini G; Cubeddu R
    Phys Med Biol; 2005 Jun; 50(11):2469-88. PubMed ID: 15901949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared imaging of the breast using omocianine as a fluorescent dye: results of a placebo-controlled, clinical, multicenter trial.
    Poellinger A; Persigehl T; Mahler M; Bahner M; Ponder SL; Diekmann F; Bremer C; Moesta T
    Invest Radiol; 2011 Nov; 46(11):697-704. PubMed ID: 21788905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging.
    Lee NA; Rusinek H; Weinreb J; Chandra R; Toth H; Singer C; Newstead G
    AJR Am J Roentgenol; 1997 Feb; 168(2):501-6. PubMed ID: 9016235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New diagnostic techniques for breast cancer detection.
    Singh V; Saunders C; Wylie L; Bourke A
    Future Oncol; 2008 Aug; 4(4):501-13. PubMed ID: 18684061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging techniques and molecular imaging in breast cancer.
    Yang WT
    Semin Ultrasound CT MR; 2011 Aug; 32(4):288-99. PubMed ID: 21782119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of optical imaging and spectroscopy to radiation biology.
    Palmer GM; Vishwanath K; Dewhirst MW
    Radiat Res; 2012 Apr; 177(4):365-75. PubMed ID: 22360397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging technologies in breast cancer detection.
    Smith AP; Hall PA; Marcello DM
    Radiol Manage; 2004; 26(4):16-24; quiz 25-7. PubMed ID: 15377106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromagnetic spectroscopy of normal breast tissue specimens obtained from reduction surgeries: comparison of optical and microwave properties.
    Lazebnik M; Zhu C; Palmer GM; Harter J; Sewall S; Ramanujam N; Hagness SC
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2444-51. PubMed ID: 18838370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast 3D Near-infrared breast imaging using indocyanine green for detection and characterization of breast lesions.
    Schneider P; Piper S; Schmitz CH; Schreiter NF; Volkwein N; Lüdemann L; Malzahn U; Poellinger A
    Rofo; 2011 Oct; 183(10):956-63. PubMed ID: 21972043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of diffuse optical spectroscopy in the clinical management of breast cancer.
    Shah N; Cerussi AE; Jakubowski D; Hsiang D; Butler J; Tromberg BJ
    Dis Markers; 2003-2004; 19(2-3):95-105. PubMed ID: 15096707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical photoacoustic breast imaging: the Twente experience.
    Heijblom M; Steenbergen W; Manohar S
    IEEE Pulse; 2015; 6(3):42-6. PubMed ID: 25974915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biophotonics techniques for structural and functional imaging, in vivo.
    Ardeshirpour Y; Gandjbakhche AH; Najafizadeh L
    Stud Health Technol Inform; 2013; 185():265-97. PubMed ID: 23542939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical imaging of breast cancer using hemodynamic changes induced by valsalva maneuver.
    Schreiter NF; Volkwein N; Schneider P; Maurer MH; Piper S; Schmitz C; Poellinger A
    Rofo; 2013 Apr; 185(4):358-66. PubMed ID: 23494503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of optical breast imaging and spectroscopy.
    Grosenick D; Rinneberg H; Cubeddu R; Taroni P
    J Biomed Opt; 2016 Sep; 21(9):091311. PubMed ID: 27403837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy.
    Taroni P; Pifferi A; Quarto G; Spinelli L; Torricelli A; Abbate F; Villa A; Balestreri N; Menna S; Cassano E; Cubeddu R
    J Biomed Opt; 2010; 15(6):060501. PubMed ID: 21198142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical tomography of the breast using a multi-channel time-resolved imager.
    Yates T; Hebden JC; Gibson A; Everdell N; Arridge SR; Douek M
    Phys Med Biol; 2005 Jun; 50(11):2503-17. PubMed ID: 15901951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.