BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 22094364)

  • 1. Model-independent plot of dynamic PET data facilitates data interpretation and model selection.
    Munk OL
    J Theor Biol; 2012 Feb; 295():1-8. PubMed ID: 22094364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-graphical analysis of dynamic PET.
    Zhou Y; Ye W; Brasić JR; Wong DF
    Neuroimage; 2010 Feb; 49(4):2947-57. PubMed ID: 19931403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A consistent and efficient graphical analysis method to improve the quantification of reversible tracer binding in radioligand receptor dynamic PET studies.
    Zhou Y; Ye W; Brasić JR; Crabb AH; Hilton J; Wong DF
    Neuroimage; 2009 Feb; 44(3):661-70. PubMed ID: 18930830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An input function estimation method for FDG-PET human brain studies.
    Guo H; Renaut RA; Chen K
    Nucl Med Biol; 2007 Jul; 34(5):483-92. PubMed ID: 17591548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis.
    Naganawa M; Kimura Y; Ishii K; Oda K; Ishiwata K; Matani A
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):201-10. PubMed ID: 15709657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of adenosine A1 receptors in human brain using positron emission tomography and [1-methyl-11C]8-dicyclopropylmethyl-1-methyl-3-propylxanthine.
    Kimura Y; Ishii K; Fukumitsu N; Oda K; Sasaki T; Kawamura K; Ishiwata K
    Nucl Med Biol; 2004 Nov; 31(8):975-81. PubMed ID: 15607479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct reconstruction of kinetic parameter images from dynamic PET data.
    Kamasak ME; Bouman CA; Morris ED; Sauer K
    IEEE Trans Med Imaging; 2005 May; 24(5):636-50. PubMed ID: 15889551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo imaging of human cerebral nicotinic acetylcholine receptors with 2-18F-fluoro-A-85380 and PET.
    Gallezot JD; Bottlaender M; Grégoire MC; Roumenov D; Deverre JR; Coulon C; Ottaviani M; Dollé F; Syrota A; Valette H
    J Nucl Med; 2005 Feb; 46(2):240-7. PubMed ID: 15695782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximum a posteriori reconstruction of the Patlak parametric image from sinograms in dynamic PET.
    Wang G; Fu L; Qi J
    Phys Med Biol; 2008 Feb; 53(3):593-604. PubMed ID: 18199904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liver kinetics of glucose analogs measured in pigs by PET: importance of dual-input blood sampling.
    Munk OL; Bass L; Roelsgaard K; Bender D; Hansen SB; Keiding S
    J Nucl Med; 2001 May; 42(5):795-801. PubMed ID: 11337579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic modeling in pre-clinical positron emission tomography.
    Kuntner C
    Z Med Phys; 2014 Dec; 24(4):274-85. PubMed ID: 24629308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of kinetic macro parameters to changes in dopamine synthesis, storage, and metabolism: a simulation study for [¹⁸F]FDOPA PET by a model with detailed dopamine pathway.
    Matsubara K; Watabe H; Kumakura Y; Hayashi T; Endres CJ; Minato K; Iida H
    Synapse; 2011 Aug; 65(8):751-62. PubMed ID: 21190220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive bi-graphical analysis for the quantification of slowly reversible radioligand binding.
    Seo S; Kim SJ; Yoo HB; Lee JY; Kim YK; Lee DS; Zhou Y; Lee JS
    Phys Med Biol; 2016 Sep; 61(18):6770-6790. PubMed ID: 27580316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic modeling of 3'-deoxy-3'-18F-fluorothymidine for quantitative cell proliferation imaging in subcutaneous tumor models in mice.
    Kim SJ; Lee JS; Im KC; Kim SY; Park SA; Lee SJ; Oh SJ; Lee DS; Moon DH
    J Nucl Med; 2008 Dec; 49(12):2057-66. PubMed ID: 18997037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new positron emission tomography imaging agent for the serotonin transporter: synthesis, pharmacological characterization, and kinetic analysis of [11C]2-[2-(dimethylaminomethyl)phenylthio]-5-fluoromethylphenylamine ([11C]AFM).
    Huang Y; Hwang DR; Bae SA; Sudo Y; Guo N; Zhu Z; Narendran R; Laruelle M
    Nucl Med Biol; 2004 Jul; 31(5):543-56. PubMed ID: 15219271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive quantification of the differential portal and arterial contribution to the liver blood supply from PET measurements using the 11C-acetate kinetic model.
    Chen S; Feng D
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1579-85. PubMed ID: 15376506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simplifications in analyzing positron emission tomography data: effects on outcome measures.
    Logan J; Alexoff D; Kriplani A
    Nucl Med Biol; 2007 Oct; 34(7):743-56. PubMed ID: 17921027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of the injected activity in dynamic 3D PET: a generalized approach using patient-specific NECs as demonstrated by a series of 15O-H2O scans.
    Walker MD; Matthews JC; Asselin MC; Saleem A; Dickinson C; Charnley N; Julyan PJ; Price PM; Jones T
    J Nucl Med; 2009 Sep; 50(9):1409-17. PubMed ID: 19690021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual evaluation of kinetic characteristics of PET probe for neuroreceptors using a two-phase graphic plot analysis.
    Ito H; Ikoma Y; Seki C; Kimura Y; Kawaguchi H; Takuwa H; Ichise M; Suhara T; Kanno I
    Ann Nucl Med; 2017 May; 31(4):273-282. PubMed ID: 28181119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of brain glucose metabolism with input function determined from brain PET images by means of Bayesian ICA and MCMC methods.
    Berradja K; Boughanmi N
    Comput Med Imaging Graph; 2012 Dec; 36(8):620-6. PubMed ID: 22884568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.