BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 22094693)

  • 1. Tunnel field-effect transistors as energy-efficient electronic switches.
    Ionescu AM; Riel H
    Nature; 2011 Nov; 479(7373):329-37. PubMed ID: 22094693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-Efficient Tunneling Field-Effect Transistors for Low-Power Device Applications: Challenges and Opportunities.
    Nazir G; Rehman A; Park SJ
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47127-47163. PubMed ID: 32914955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A subthermionic tunnel field-effect transistor with an atomically thin channel.
    Sarkar D; Xie X; Liu W; Cao W; Kang J; Gong Y; Kraemer S; Ajayan PM; Banerjee K
    Nature; 2015 Oct; 526(7571):91-5. PubMed ID: 26432247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation-Hard and Repairable Complementary Metal-Oxide-Semiconductor Circuits Integrating n-type Indium Oxide and p-type Carbon Nanotube Field-Effect Transistors.
    Luo M; Zhu M; Wei M; Shao S; Robin M; Wei C; Cui Z; Zhao J; Zhang Z
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49963-49970. PubMed ID: 33095560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films.
    Yang Y; Ding L; Han J; Zhang Z; Peng LM
    ACS Nano; 2017 Apr; 11(4):4124-4132. PubMed ID: 28333433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Issues of nanoelectronics: a possible roadmap.
    Wang KL
    J Nanosci Nanotechnol; 2002; 2(3-4):235-66. PubMed ID: 12908252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Steep-Slope Transistor Combining Phase-Change and Band-to-Band-Tunneling to Achieve a sub-Unity Body Factor.
    Vitale WA; Casu EA; Biswas A; Rosca T; Alper C; Krammer A; Luong GV; Zhao QT; Mantl S; Schüler A; Ionescu AM
    Sci Rep; 2017 Mar; 7(1):355. PubMed ID: 28336970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementary Transistors Based on Aligned Semiconducting Carbon Nanotube Arrays.
    Liu C; Cao Y; Wang B; Zhang Z; Lin Y; Xu L; Yang Y; Jin C; Peng LM; Zhang Z
    ACS Nano; 2022 Dec; 16(12):21482-21490. PubMed ID: 36416375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomically thin van der Waals tunnel field-effect transistors and its potential for applications.
    Yang SH; Yao YT; Xu Y; Lin CY; Chang YM; Suen YW; Sun H; Lien CH; Li W; Lin YF
    Nanotechnology; 2019 Mar; 30(10):105201. PubMed ID: 30530943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling carbon nanotube complementary transistors to 5-nm gate lengths.
    Qiu C; Zhang Z; Xiao M; Yang Y; Zhong D; Peng LM
    Science; 2017 Jan; 355(6322):271-276. PubMed ID: 28104886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strengthened Complementary Metal-Oxide-Semiconductor Logic for Small-Band-Gap Semiconductor-Based High-Performance and Low-Power Application.
    Zhao C; Zhong D; Liu L; Yang Y; Shi H; Peng LM; Zhang Z
    ACS Nano; 2020 Nov; 14(11):15267-15275. PubMed ID: 33124414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sub-5 nm Ultrathin In
    Xu L; Xu L; Lan J; Li Y; Li Q; Wang A; Guo Y; Ang YS; Quhe R; Lu J
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38676632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Limit of Ultrathin GaAs Transistors.
    Li Q; Fang S; Liu S; Xu L; Xu L; Yang C; Yang J; Shi B; Ma J; Yang J; Quhe R; Lu J
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35575689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can Carbon Nanotube Transistors Be Scaled Down to the Sub-5 nm Gate Length?
    Xu L; Yang J; Qiu C; Liu S; Zhou W; Li Q; Shi B; Ma J; Yang C; Lu J; Zhang Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31957-31967. PubMed ID: 34210135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact Potential Model for Si
    Kim S; Choi WY
    J Nanosci Nanotechnol; 2018 Sep; 18(9):5953-5958. PubMed ID: 29677723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensing with Advanced Computing Technology: Fin Field-Effect Transistors with High-k Gate Stack on Bulk Silicon.
    Rigante S; Scarbolo P; Wipf M; Stoop RL; Bedner K; Buitrago E; Bazigos A; Bouvet D; Calame M; Schönenberger C; Ionescu AM
    ACS Nano; 2015 May; 9(5):4872-81. PubMed ID: 25817336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-Steep-Slope High-Gain MoS
    Lin J; Chen X; Duan X; Yu Z; Niu W; Zhang M; Liu C; Li G; Liu Y; Liu X; Zhou P; Liao L
    Adv Sci (Weinh); 2022 Mar; 9(8):e2104439. PubMed ID: 35038247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ge/Si nanowire heterostructures as high-performance field-effect transistors.
    Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM
    Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultralow power complementary inverter circuits using axially doped p- and n-channel Si nanowire field effect transistors.
    Van NH; Lee JH; Whang D; Kang DJ
    Nanoscale; 2016 Jun; 8(23):12022-8. PubMed ID: 27240692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits.
    Nam S; Jiang X; Xiong Q; Ham D; Lieber CM
    Proc Natl Acad Sci U S A; 2009 Dec; 106(50):21035-8. PubMed ID: 19940239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.