BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22094825)

  • 21. Using evoked compound action potentials to assess activation of electrodes and predict C-levels in the Tempo+ cochlear implant speech processor.
    Alvarez I; de la Torre A; Sainz M; Roldán C; Schoesser H; Spitzer P
    Ear Hear; 2010 Feb; 31(1):134-45. PubMed ID: 19838116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clinical evaluation of higher stimulation rates in the nucleus research platform 8 system.
    Plant K; Holden L; Skinner M; Arcaroli J; Whitford L; Law MA; Nel E
    Ear Hear; 2007 Jun; 28(3):381-93. PubMed ID: 17485987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Speech recognition with a CIS strategy for the ineraid multichannel cochlear implant.
    Boëx C; Pelizzone M; Montandon P
    Am J Otol; 1996 Jan; 17(1):61-8. PubMed ID: 8694136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of speech processing strategies used in the Clarion implant processor.
    Loizou PC; Stickney G; Mishra L; Assmann P
    Ear Hear; 2003 Feb; 24(1):12-9. PubMed ID: 12598809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cochlear implantation outcome in prelingually deafened young adults. A speech perception study.
    Santarelli R; De Filippi R; Genovese E; Arslan E
    Audiol Neurootol; 2008; 13(4):257-65. PubMed ID: 18259078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Speech perception with a cochlear implant used in conjunction with a hearing aid in the opposite ear.
    Hamzavi J; Pok SM; Gstoettner W; Baumgartner WD
    Int J Audiol; 2004 Feb; 43(2):61-5. PubMed ID: 15035557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tone discrimination and speech perception benefit in Mandarin-speaking children fit with HiRes fidelity 120 sound processing.
    Chang YT; Yang HM; Lin YH; Liu SH; Wu JL
    Otol Neurotol; 2009 Sep; 30(6):750-7. PubMed ID: 19704359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Experiences in Kiel with the cochlear implant].
    Müller-Deile J; Schmidt BJ; Rudert H
    Laryngorhinootologie; 1994 Jun; 73(6):300-10. PubMed ID: 8060448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of speech perception performance between Sprint/Esprit 3G and Freedom processors in children implanted with nucleus cochlear implants.
    Santarelli R; Magnavita V; De Filippi R; Ventura L; Genovese E; Arslan E
    Otol Neurotol; 2009 Apr; 30(3):304-12. PubMed ID: 19225440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Variables affecting implant performance in children.
    Miyamoto RT; Osberger MJ; Todd SL; Robbins AM; Stroer BS; Zimmerman-Phillips S; Carney AE
    Laryngoscope; 1994 Sep; 104(9):1120-4. PubMed ID: 8072359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Main peak interleaved sampling (MPIS) strategy: effect of stimulation rate variations on speech perception in adult cochlear implant recipients using the Digisonic SP cochlear implant.
    Di Lella F; Bacciu A; Pasanisi E; Vincenti V; Guida M; Bacciu S
    Acta Otolaryngol; 2010; 130(1):102-7. PubMed ID: 19424919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of the growth of open-set speech perception between the nucleus 22 and nucleus 24 cochlear implant systems.
    Waltzman SB; Cohen NL; Roland JT
    Am J Otol; 1999 Jul; 20(4):435-41. PubMed ID: 10431883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effects of temporal fine structure stimulation on Mandarin identification in cochlear implant users].
    Qi B; Liu B; Dong R; Krenmayr A; Chen X; Wang S
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2014 Apr; 49(4):294-9. PubMed ID: 24931017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of bilateral and unilateral cochlear implants in children with sequential surgery.
    Strøm-Roum H; Laurent C; Wie OB
    Int J Pediatr Otorhinolaryngol; 2012 Jan; 76(1):95-9. PubMed ID: 22075133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance of subjects fit with the Advanced Bionics CII and Nucleus 3G cochlear implant devices.
    Spahr AJ; Dorman MF
    Arch Otolaryngol Head Neck Surg; 2004 May; 130(5):624-8. PubMed ID: 15148187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perceptual benefit and functional outcomes for children using sequential bilateral cochlear implants.
    Galvin KL; Mok M; Dowell RC
    Ear Hear; 2007 Aug; 28(4):470-82. PubMed ID: 17609610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved speech reception and sound quality with the DUET2 audio processor for electric acoustic stimulation.
    Kleine Punte A; Mertens G; Cochet E; De Bodt M; Van de Heyning P
    Acta Otolaryngol; 2015; 135(10):1022-9. PubMed ID: 26073650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Converted and upgraded maps programmed in the newer speech processor for the first generation of multichannel cochlear implant.
    Magalhães AT; Goffi-Gomez MV; Hoshino AC; Tsuji RK; Bento RF; Brito R
    Otol Neurotol; 2013 Sep; 34(7):1193-200. PubMed ID: 23921918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact of cochlear implantation on quality of life: the role of audiologic performance and variables.
    Hirschfelder A; Gräbel S; Olze H
    Otolaryngol Head Neck Surg; 2008 Mar; 138(3):357-62. PubMed ID: 18312885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new audio processor for combined electric and acoustic stimulation for the treatment of partial deafness.
    Lorens A; Zgoda M; Skarzynski H
    Acta Otolaryngol; 2012 Jul; 132(7):739-50. PubMed ID: 22668312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.