These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
55 related articles for article (PubMed ID: 22095478)
1. Evaluation of genetic dissimilarity in a segregating wine grape population. Viana AP; Riaz S; Walker MA Genet Mol Res; 2011 Nov; 10(4):3847-55. PubMed ID: 22095478 [TBL] [Abstract][Full Text] [Related]
2. Genetic dissection of agronomic traits within a segregating population of breeding table grapes. Viana AP; Riaz S; Walker MA Genet Mol Res; 2013 Apr; 12(2):951-64. PubMed ID: 23613241 [TBL] [Abstract][Full Text] [Related]
3. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera). Jensen JS; Demiray S; Egebo M; Meyer AS J Agric Food Chem; 2008 Feb; 56(3):1105-15. PubMed ID: 18173238 [TBL] [Abstract][Full Text] [Related]
4. Magnetic resonance imaging for nondestructive analysis of wine grapes. Andaur JE; Guesalaga AR; Agosin EE; Guarini MW; Irarrázaval P J Agric Food Chem; 2004 Jan; 52(2):165-70. PubMed ID: 14733490 [TBL] [Abstract][Full Text] [Related]
5. Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development. Peng FY; Reid KE; Liao N; Schlosser J; Lijavetzky D; Holt R; Martínez Zapater JM; Jones S; Marra M; Bohlmann J; Lund ST Gene; 2007 Nov; 402(1-2):40-50. PubMed ID: 17761391 [TBL] [Abstract][Full Text] [Related]
6. A methyltransferase essential for the methoxypyrazine-derived flavour of wine. Dunlevy JD; Dennis EG; Soole KL; Perkins MV; Davies C; Boss PK Plant J; 2013 Aug; 75(4):606-17. PubMed ID: 23627620 [TBL] [Abstract][Full Text] [Related]
7. Proton Nuclear Magnetic Resonance-Spectroscopic Discrimination of Wines Reflects Genetic Homology of Several Different Grape (V. vinifera L.) Cultivars. Hu B; Yue Y; Zhu Y; Wen W; Zhang F; Hardie JW PLoS One; 2015; 10(12):e0142840. PubMed ID: 26658757 [TBL] [Abstract][Full Text] [Related]
8. 1H nuclear magnetic resonance-based metabolomic characterization of wines by grape varieties and production areas. Son HS; Kim KM; van den Berg F; Hwang GS; Park WM; Lee CH; Hong YS J Agric Food Chem; 2008 Sep; 56(17):8007-16. PubMed ID: 18707121 [TBL] [Abstract][Full Text] [Related]
9. The parentage of a classic wine grape, Cabernet Sauvignon. Bowers JE; Meredith CP Nat Genet; 1997 May; 16(1):84-7. PubMed ID: 9140400 [TBL] [Abstract][Full Text] [Related]
10. Detailed characterization of proanthocyanidins in skin, seeds, and wine of Shiraz and Cabernet Sauvignon wine grapes (Vitis vinifera). Hanlin RL; Kelm MA; Wilkinson KL; Downey MO J Agric Food Chem; 2011 Dec; 59(24):13265-76. PubMed ID: 22085086 [TBL] [Abstract][Full Text] [Related]
11. Changes in the volatile compound production of fermentations made from musts with increasing grape content. Keyzers RA; Boss PK J Agric Food Chem; 2010 Jan; 58(2):1153-64. PubMed ID: 20020683 [TBL] [Abstract][Full Text] [Related]
12. QTL analysis for fruit yield components in table grapes (Vitis vinifera). Fanizza G; Lamaj F; Costantini L; Chaabane R; Grando MS Theor Appl Genet; 2005 Aug; 111(4):658-64. PubMed ID: 15995866 [TBL] [Abstract][Full Text] [Related]
13. Yeast species associated with wine grapes in China. Li SS; Cheng C; Li Z; Chen JY; Yan B; Han BZ; Reeves M Int J Food Microbiol; 2010 Mar; 138(1-2):85-90. PubMed ID: 20116124 [TBL] [Abstract][Full Text] [Related]
14. Timing of cluster light environment manipulation during grape development affects C13 norisoprenoid and carotenoid concentrations in Riesling. Kwasniewski MT; Vanden Heuvel JE; Pan BS; Sacks GL J Agric Food Chem; 2010 Jun; 58(11):6841-9. PubMed ID: 20450186 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Vitis vinifera L. Cv. Carménère grape and wine proanthocyanidins. Fernández K; Kennedy JA; Agosin E J Agric Food Chem; 2007 May; 55(9):3675-80. PubMed ID: 17407309 [TBL] [Abstract][Full Text] [Related]
16. Influence of shriveling on berry composition and antioxidant activity of Cabernet Sauvignon grapes from Shanxi vineyards. Fang Y; Meng J; Zhang A; Liu J; Xu T; Yu W; Chen S; Li H; Zhang Z; Wang H J Sci Food Agric; 2011 Mar; 91(4):749-57. PubMed ID: 21302331 [TBL] [Abstract][Full Text] [Related]
17. Natural yeast flora of different varieties of grapes used for wine making in India. Chavan P; Mane S; Kulkarni G; Shaikh S; Ghormade V; Nerkar DP; Shouche Y; Deshpande MV Food Microbiol; 2009 Dec; 26(8):801-8. PubMed ID: 19835764 [TBL] [Abstract][Full Text] [Related]
18. The role of soil chemistry in wine grape quality and sustainable soil management in vineyards. Mackenzie DE; Christy AG Water Sci Technol; 2005; 51(1):27-37. PubMed ID: 15771096 [TBL] [Abstract][Full Text] [Related]
19. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. Davies C; Shin R; Liu W; Thomas MR; Schachtman DP J Exp Bot; 2006; 57(12):3209-16. PubMed ID: 16936223 [TBL] [Abstract][Full Text] [Related]
20. Yeasts isolated from three varieties of grapes cultivated in different locations of the Dolenjska vine-growing region, Slovenia. Raspor P; Milek DM; Polanc J; Mozina SS; Cadez N Int J Food Microbiol; 2006 May; 109(1-2):97-102. PubMed ID: 16626833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]