These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22095563)

  • 1. Super folds, networks, and barriers.
    Burke S; Elber R
    Proteins; 2012 Feb; 80(2):463-70. PubMed ID: 22095563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How are model protein structures distributed in sequence space?
    Bornberg-Bauer E
    Biophys J; 1997 Nov; 73(5):2393-403. PubMed ID: 9370433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence and structure space model of protein divergence driven by point mutations.
    Arodź T; Płonka PM
    J Theor Biol; 2013 Aug; 330():1-8. PubMed ID: 23541620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Many Protein Sequences Fold to a Given Structure? A Coevolutionary Analysis.
    Tian P; Best RB
    Biophys J; 2017 Oct; 113(8):1719-1730. PubMed ID: 29045866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of preferred structures in a simple model of protein folding.
    Li H; Helling R; Tang C; Wingreen N
    Science; 1996 Aug; 273(5275):666-9. PubMed ID: 8662562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration of the relationship between topology and designability of conformations.
    Leelananda SP; Towfic F; Jernigan RL; Kloczkowski A
    J Chem Phys; 2011 Jun; 134(23):235101. PubMed ID: 21702580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The scale-free nature of protein sequence space.
    Buchholz PCF; Zeil C; Pleiss J
    PLoS One; 2018; 13(8):e0200815. PubMed ID: 30067815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of highly designable protein-backbone conformations in an off-lattice model.
    Miller J; Zeng C; Wingreen NS; Tang C
    Proteins; 2002 Jun; 47(4):506-12. PubMed ID: 12001229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical origins of protein superfamilies.
    Zeldovich KB; Berezovsky IN; Shakhnovich EI
    J Mol Biol; 2006 Apr; 357(4):1335-43. PubMed ID: 16483605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced alphabet of prebiotic amino acids optimally encodes the conformational space of diverse extant protein folds.
    Solis AD
    BMC Evol Biol; 2019 Jul; 19(1):158. PubMed ID: 31362700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution and similarity evaluation of protein structures in contact map space.
    Gupta N; Mangal N; Biswas S
    Proteins; 2005 May; 59(2):196-204. PubMed ID: 15726585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The network of sequence flow between protein structures.
    Meyerguz L; Kleinberg J; Elber R
    Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11627-32. PubMed ID: 17596339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid protein fold space and its implications.
    Porter LL
    Bioessays; 2023 Sep; 45(9):e2300057. PubMed ID: 37431685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles.
    Li Z; Yang Y; Faraggi E; Zhan J; Zhou Y
    Proteins; 2014 Oct; 82(10):2565-73. PubMed ID: 24898915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The amino acid alphabet and the architecture of the protein sequence-structure map. I. Binary alphabets.
    Ferrada E
    PLoS Comput Biol; 2014 Dec; 10(12):e1003946. PubMed ID: 25473967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational exploration of the network of sequence flow between protein structures.
    Cao B; Elber R
    Proteins; 2010 Mar; 78(4):985-1003. PubMed ID: 19899165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutral networks in protein space: a computational study based on knowledge-based potentials of mean force.
    Babajide A; Hofacker IL; Sippl MJ; Stadler PF
    Fold Des; 1997; 2(5):261-9. PubMed ID: 9261065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the sequence fitness landscape of a bridge between protein folds.
    Tian P; Best RB
    PLoS Comput Biol; 2020 Oct; 16(10):e1008285. PubMed ID: 33048928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evolutionary approach to folding small alpha-helical proteins that uses sequence information and an empirical guiding fitness function.
    Bowie JU; Eisenberg D
    Proc Natl Acad Sci U S A; 1994 May; 91(10):4436-40. PubMed ID: 8183927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring protein sequence space using knowledge-based potentials.
    Babajide A; Farber R; Hofacker IL; Inman J; Lapedes AS; Stadler PF
    J Theor Biol; 2001 Sep; 212(1):35-46. PubMed ID: 11527443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.