These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22095563)

  • 21. Characterizing the existing and potential structural space of proteins by large-scale multiple loop permutations.
    Dai L; Zhou Y
    J Mol Biol; 2011 May; 408(3):585-95. PubMed ID: 21376059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neutral evolution of proteins: The superfunnel in sequence space and its relation to mutational robustness.
    Noirel J; Simonson T
    J Chem Phys; 2008 Nov; 129(18):185104. PubMed ID: 19045432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cooperative "folding transition" in the sequence space facilitates function-driven evolution of protein families.
    Kinjo AR
    J Theor Biol; 2018 Apr; 443():18-27. PubMed ID: 29355538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Super-secondary structures and modeling of protein folds.
    Efimov AV
    Methods Mol Biol; 2013; 932():177-89. PubMed ID: 22987353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimating the prevalence of protein sequences adopting functional enzyme folds.
    Axe DD
    J Mol Biol; 2004 Aug; 341(5):1295-315. PubMed ID: 15321723
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting structures for genome proteins.
    Fischer D; Eisenberg D
    Curr Opin Struct Biol; 1999 Apr; 9(2):208-11. PubMed ID: 10322219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of negative selection in protein evolution revealed through the energetics of the native state ensemble.
    Hoffmann J; Wrabl JO; Hilser VJ
    Proteins; 2016 Apr; 84(4):435-47. PubMed ID: 26800099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Connectivity of neutral networks, overdispersion, and structural conservation in protein evolution.
    Bastolla U; Porto M; Eduardo Roman MH; Vendruscolo MH
    J Mol Evol; 2003 Mar; 56(3):243-54. PubMed ID: 12612828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein structure prediction by threading methods: evaluation of current techniques.
    Lemer CM; Rooman MJ; Wodak SJ
    Proteins; 1995 Nov; 23(3):337-55. PubMed ID: 8710827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving coarse-grained models of protein folding through weighting of polar-polar/hydrophobic-hydrophobic interactions into crowded spaces.
    Beltrán HI; Alas-Guardado SJ; González-Pérez PP
    J Mol Model; 2022 Mar; 28(4):87. PubMed ID: 35262807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Designing amino acid sequences to fold with good hydrophobic cores.
    Sun S; Brem R; Chan HS; Dill KA
    Protein Eng; 1995 Dec; 8(12):1205-13. PubMed ID: 8869633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a motif-based topology-independent structure comparison method to identify evolutionarily related folds.
    Dybas JM; Fiser A
    Proteins; 2016 Dec; 84(12):1859-1874. PubMed ID: 27671894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Folding and Stabilization of Native-Sequence-Reversed Proteins.
    Zhang Y; Weber JK; Zhou R
    Sci Rep; 2016 Apr; 6():25138. PubMed ID: 27113844
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Universality and diversity of the protein folding scenarios: a comprehensive analysis with the aid of a lattice model.
    Mirny LA; Abkevich V; Shakhnovich EI
    Fold Des; 1996; 1(2):103-16. PubMed ID: 9079370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thoroughly sampling sequence space: large-scale protein design of structural ensembles.
    Larson SM; England JL; Desjarlais JR; Pande VS
    Protein Sci; 2002 Dec; 11(12):2804-13. PubMed ID: 12441379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An in silico exploration of the neutral network in protein sequence space.
    Aita T; Ota M; Husimi Y
    J Theor Biol; 2003 Apr; 221(4):599-613. PubMed ID: 12713943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The designability of protein structures.
    Helling R; Li H; Mélin R; Miller J; Wingreen N; Zeng C; Tang C
    J Mol Graph Model; 2001; 19(1):157-67. PubMed ID: 11381527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in Protein Super-Secondary Structure Prediction and Application to Protein Structure Prediction.
    MacCarthy E; Perry D; Kc DB
    Methods Mol Biol; 2019; 1958():15-45. PubMed ID: 30945212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics of protein folding. A lattice model study of the requirements for folding to the native state.
    Sali A; Shakhnovich E; Karplus M
    J Mol Biol; 1994 Feb; 235(5):1614-36. PubMed ID: 8107095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Principles of protein folding--a perspective from simple exact models.
    Dill KA; Bromberg S; Yue K; Fiebig KM; Yee DP; Thomas PD; Chan HS
    Protein Sci; 1995 Apr; 4(4):561-602. PubMed ID: 7613459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.