BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 22095606)

  • 1. Aluminum triggers broad changes in microRNA expression in rice roots.
    Lima JC; Arenhart RA; Margis-Pinheiro M; Margis R
    Genet Mol Res; 2011 Nov; 10(4):2817-32. PubMed ID: 22095606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of novel stress-regulated microRNAs from Oryza sativa L.
    Jian X; Zhang L; Li G; Zhang L; Wang X; Cao X; Fang X; Chen F
    Genomics; 2010 Jan; 95(1):47-55. PubMed ID: 19796675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aluminum stress response in rice: effects on membrane lipid composition and expression of lipid biosynthesis genes.
    Huynh VB; Repellin A; Zuily-Fodil Y; Pham-Thi AT
    Physiol Plant; 2012 Nov; 146(3):272-84. PubMed ID: 22452575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress.
    Ahsan N; Lee DG; Alam I; Kim PJ; Lee JJ; Ahn YO; Kwak SS; Lee IJ; Bahk JD; Kang KY; Renaut J; Komatsu S; Lee BH
    Proteomics; 2008 Sep; 8(17):3561-76. PubMed ID: 18752204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-mediated signaling involved in plant root development.
    Meng Y; Ma X; Chen D; Wu P; Chen M
    Biochem Biophys Res Commun; 2010 Mar; 393(3):345-9. PubMed ID: 20138828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa).
    Peng T; Lv Q; Zhang J; Li J; Du Y; Zhao Q
    J Exp Bot; 2011 Oct; 62(14):4943-54. PubMed ID: 21791435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiling of cold-stress-responsive miRNAs in rice by microarrays.
    Lv DK; Bai X; Li Y; Ding XD; Ge Y; Cai H; Ji W; Wu N; Zhu YM
    Gene; 2010 Jul; 459(1-2):39-47. PubMed ID: 20350593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metal-regulated new microRNAs from rice.
    Huang SQ; Peng J; Qiu CX; Yang ZM
    J Inorg Biochem; 2009 Feb; 103(2):282-7. PubMed ID: 19081140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of drought-induced microRNAs in rice.
    Zhao B; Liang R; Ge L; Li W; Xiao H; Lin H; Ruan K; Jin Y
    Biochem Biophys Res Commun; 2007 Mar; 354(2):585-90. PubMed ID: 17254555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular identification and analysis of arsenite stress-responsive miRNAs in rice.
    Liu Q; Zhang H
    J Agric Food Chem; 2012 Jul; 60(26):6524-36. PubMed ID: 22712679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome-wide identification of microRNA targets in rice.
    Li YF; Zheng Y; Addo-Quaye C; Zhang L; Saini A; Jagadeeswaran G; Axtell MJ; Zhang W; Sunkar R
    Plant J; 2010 Jun; 62(5):742-59. PubMed ID: 20202174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components.
    Mao C; Yi K; Yang L; Zheng B; Wu Y; Liu F; Wu P
    J Exp Bot; 2004 Jan; 55(394):137-43. PubMed ID: 14645395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection and mutation on microRNA target sequences during rice evolution.
    Guo X; Gui Y; Wang Y; Zhu QH; Helliwell C; Fan L
    BMC Genomics; 2008 Oct; 9():454. PubMed ID: 18831738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of ASR genes in aluminium tolerance mechanisms in rice.
    Arenhart RA; Lima JC; Pedron M; Carvalho FE; Silveira JA; Rosa SB; Caverzan A; Andrade CM; Schünemann M; Margis R; Margis-Pinheiro M
    Plant Cell Environ; 2013 Jan; 36(1):52-67. PubMed ID: 22676236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots.
    Takeuchi K; Gyohda A; Tominaga M; Kawakatsu M; Hatakeyama A; Ishii N; Shimaya K; Nishimura T; Riemann M; Nick P; Hashimoto M; Komano T; Endo A; Okamoto T; Jikumaru Y; Kamiya Y; Terakawa T; Koshiba T
    Plant Cell Physiol; 2011 Sep; 52(9):1686-96. PubMed ID: 21828106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene structure and expression of the high-affinity nitrate transport system in rice roots.
    Cai C; Wang JY; Zhu YG; Shen QR; Li B; Tong YP; Li ZS
    J Integr Plant Biol; 2008 Apr; 50(4):443-51. PubMed ID: 18713378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of miR319 during cold stress in sugarcane.
    Thiebaut F; Rojas CA; Almeida KL; Grativol C; Domiciano GC; Lamb CR; Engler Jde A; Hemerly AS; Ferreira PC
    Plant Cell Environ; 2012 Mar; 35(3):502-12. PubMed ID: 22017483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of abiotic stress miRNA transcription factor binding motifs (TFBMs) in rice.
    Devi SJ; Madhav MS; Kumar GR; Goel AK; Umakanth B; Jahnavi B; Viraktamath BC
    Gene; 2013 Nov; 531(1):15-22. PubMed ID: 23994683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of OsPIP2;7, a water channel protein in rice.
    Li GW; Zhang MH; Cai WM; Sun WN; Su WA
    Plant Cell Physiol; 2008 Dec; 49(12):1851-8. PubMed ID: 18988636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling.
    Liu Q; Zhang YC; Wang CY; Luo YC; Huang QJ; Chen SY; Zhou H; Qu LH; Chen YQ
    FEBS Lett; 2009 Feb; 583(4):723-8. PubMed ID: 19167382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.