These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22095758)

  • 1. Polymeric photoresist nanoparticles: light-induced degradation of hydrophobic polymers in aqueous dispersion.
    Klinger D; Landfester K
    Macromol Rapid Commun; 2011 Dec; 32(24):1979-85. PubMed ID: 22095758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homopolymer self-assembly into stable nanoparticles: concerted action of hydrophobic association and hydrogen bonding in thermoresponsive poly(alkylacrylic acid)s.
    Sedlák M
    J Phys Chem B; 2012 Mar; 116(8):2356-64. PubMed ID: 22280359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of alginic acid-poly[2-(diethylamino)ethyl methacrylate] monodispersed nanoparticles by a polymer-monomer pair reaction system.
    Guo R; Zhang L; Jiang Z; Cao Y; Ding Y; Jiang X
    Biomacromolecules; 2007 Mar; 8(3):843-50. PubMed ID: 17291037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new design for light-breakable polymer micelles.
    Jiang J; Tong X; Zhao Y
    J Am Chem Soc; 2005 Jun; 127(23):8290-1. PubMed ID: 15941255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of polymeric Janus particles by directional UV-induced reactions.
    Liu L; Ren M; Yang W
    Langmuir; 2009 Sep; 25(18):11048-53. PubMed ID: 19522475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative photochemical reactivity of spherical and tubular fullerene nanoparticles in water under ultraviolet (UV) irradiation.
    Chae SR; Watanabe Y; Wiesner MR
    Water Res; 2011 Jan; 45(1):308-14. PubMed ID: 20708771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water.
    Wang Z; Tan B; Hussain I; Schaeffer N; Wyatt MF; Brust M; Cooper AI
    Langmuir; 2007 Jan; 23(2):885-95. PubMed ID: 17209648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The softer and more hydrophobic the better: influence of the side chain of polymethacrylate nanoparticles for cellular uptake.
    Lorenz S; Hauser CP; Autenrieth B; Weiss CK; Landfester K; Mailänder V
    Macromol Biosci; 2010 Sep; 10(9):1034-42. PubMed ID: 20572275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-sensitive Eudragit nanoparticles for mucosal drug delivery.
    Yoo JW; Giri N; Lee CH
    Int J Pharm; 2011 Jan; 403(1-2):262-7. PubMed ID: 20971177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilized vesicles consisting of small amphiphiles for stepwise photorelease via UV light.
    Dong J; Zeng Y; Xun Z; Han Y; Chen J; Li YY; Li Y
    Langmuir; 2012 Jan; 28(3):1733-7. PubMed ID: 22172224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of burst release from pH-responsive polymeric microparticles.
    Rizi K; Green RJ; Khutoryanskaya O; Donaldson M; Williams AC
    J Pharm Pharmacol; 2011 Sep; 63(9):1141-55. PubMed ID: 21827486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of novel reversible photoswitchable fluorescent polymeric nanoparticles via one-step miniemulsion polymerization.
    Chen J; Zhang P; Fang G; Yi P; Yu X; Li X; Zeng F; Wu S
    J Phys Chem B; 2011 Apr; 115(13):3354-62. PubMed ID: 21405122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and optimization of PMAA-chitosan-PEG nanoparticles for oral drug delivery.
    Pawar H; Douroumis D; Boateng JS
    Colloids Surf B Biointerfaces; 2012 Feb; 90():102-8. PubMed ID: 22037474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of superparamagnetic ribonuclease A surface-imprinted submicrometer particles for protein recognition in aqueous media.
    Tan CJ; Tong YW
    Anal Chem; 2007 Jan; 79(1):299-306. PubMed ID: 17194154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method for encapsulating hydrophobic compounds within cationic polymeric nanoparticles.
    Ben Yehuda Greenwald M; Ben Sasson S; Bianco-Peled H
    J Microencapsul; 2013; 30(6):580-8. PubMed ID: 23489012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solubilization of hydrophobic molecules in nanoparticles formed by polymer-surfactant interactions.
    Nizri G; Magdassi S
    J Colloid Interface Sci; 2005 Nov; 291(1):169-74. PubMed ID: 15975588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of hydrophobically modified water-soluble polymers for the dispersion of hydrophobic magnetic nanoparticles in aqueous media.
    Iatridi Z; Georgiadou V; Menelaou M; Dendrinou-Samara C; Bokias G
    Dalton Trans; 2014 Jun; 43(23):8633-43. PubMed ID: 24759871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic light scattering investigations of nanoparticle aggregation following a light-induced pH jump.
    Murphy RJ; Pristinski D; Migler K; Douglas JF; Prabhu VM
    J Chem Phys; 2010 May; 132(19):194903. PubMed ID: 20499988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoreversible fluorescent modulation of nanoparticles via one-step miniemulsion polymerization.
    Chen J; Zeng F; Wu S; Su J; Tong Z
    Small; 2009 Apr; 5(8):970-8. PubMed ID: 19235194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioeliminable polymeric nanoparticles for proteic drug delivery.
    Chiellini F; Bartoli C; Dinucci D; Piras AM; Anderson R; Croucher T
    Int J Pharm; 2007 Oct; 343(1-2):90-7. PubMed ID: 17580105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.