BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 22095762)

  • 21. Natural maize phenolic acids for control of aflatoxigenic fungi on maize.
    Nesci A; Gsponer N; Etcheverry M
    J Food Sci; 2007 Jun; 72(5):M180-5. PubMed ID: 17995741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between soil densities of Aspergillus species and colonization of wounded peanut seeds.
    Horn BW
    Can J Microbiol; 2006 Oct; 52(10):951-60. PubMed ID: 17110963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prevention of pre-harvest aflatoxin production and the effect of different harvest times on peanut (Arachis hypogaea L.) fatty acids.
    Canavar Ö; Kaynak MA
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(10):1807-18. PubMed ID: 23889477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural occurrence of aflatoxins in peanuts and peanut butter from Bulawayo, Zimbabwe.
    Mupunga I; Lebelo SL; Mngqawa P; Rheeder JP; Katerere DR
    J Food Prot; 2014 Oct; 77(10):1814-8. PubMed ID: 25285504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro effect of phenolic antioxidants on germination, growth and aflatoxin B accumulation by peanut Aspergillus section Flavi.
    Passone MA; Resnik SL; Etcheverry MG
    J Appl Microbiol; 2005; 99(3):682-91. PubMed ID: 16108810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mycobiota and mycotoxins in Brazilian peanut kernels from sowing to harvest.
    Gonçalez E; Nogueira JH; Fonseca H; Felicio JD; Pino FA; Corrêa B
    Int J Food Microbiol; 2008 Apr; 123(3):184-90. PubMed ID: 18295923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Inhibition of Growth of Seed-Borne Fungi and Aflatoxin Production on Stored Peanuts by Allyl Isothiocyanate Vapor].
    Okano K; Nishioka C; Iida T; Ozu Y; Kaneko M; Watanabe Y; Mizukami Y; Ichinoe M
    Shokuhin Eiseigaku Zasshi; 2018; 59(1):45-50. PubMed ID: 29743467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biocontrol of Aspergillus flavus on peanut kernels by use of a strain of marine Bacillus megaterium.
    Kong Q; Shan S; Liu Q; Wang X; Yu F
    Int J Food Microbiol; 2010 Apr; 139(1-2):31-5. PubMed ID: 20156660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Bacillus subtilis ANSB060 on growth performance, meat quality and aflatoxin residues in broilers fed moldy peanut meal naturally contaminated with aflatoxins.
    Fan Y; Zhao L; Ma Q; Li X; Shi H; Zhou T; Zhang J; Ji C
    Food Chem Toxicol; 2013 Sep; 59():748-53. PubMed ID: 23872125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mycological and aflatoxin contamination of peanuts sold at markets in Kinshasa, Democratic Republic of Congo, and Pretoria, South Africa.
    Kamika I; Mngqawa P; Rheeder JP; Teffo SL; Katerere DR
    Food Addit Contam Part B Surveill; 2014; 7(2):120-6. PubMed ID: 24914597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical inactivation of aflatoxins in peanut protein ingredients.
    Natarajan KR
    J Environ Pathol Toxicol Oncol; 1992; 11(4):217-27. PubMed ID: 1507074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of cultural and analytical methods for determination of aflatoxin production by Mississippi Delta Aspergillus isolates.
    Abbas HK; Zablotowicz RM; Weaver MA; Horn BW; Xie W; Shier WT
    Can J Microbiol; 2004 Mar; 50(3):193-9. PubMed ID: 15105886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of aflatoxin and Aspergillus sp. contamination in raw peanuts and peanut-based products along this supply chain in Malaysia.
    Norlia M; Nor-Khaizura MAR; Selamat J; Abu Bakar F; Radu S; Chin CK
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Sep; 35(9):1787-1802. PubMed ID: 29912639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficiency of Artemisia nilagirica (Clarke) Pamp. essential oil as a mycotoxicant against postharvest mycobiota of table grapes.
    Sonker N; Pandey AK; Singh P
    J Sci Food Agric; 2015 Jul; 95(9):1932-9. PubMed ID: 25199920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Winged bean (Psophocarpus tetragonolobus (L.) DC) as a substrate for growth and aflatoxin production by aflatoxigenic strains of Aspergillus spp.
    Bean G; Fernando T
    Mycopathologia; 1986 Jan; 93(1):3-7. PubMed ID: 3083261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Separate and combined applications of nontoxigenic Aspergillus flavus and A. parasiticus for biocontrol of aflatoxin in peanuts.
    Dorner JW; Horn BW
    Mycopathologia; 2007 Apr; 163(4):215-23. PubMed ID: 17390234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of potential biocontrol agent for aflatoxin in Argentinean peanuts.
    Alaniz Zanon MS; Chiotta ML; Giaj-Merlera G; Barros G; Chulze S
    Int J Food Microbiol; 2013 Apr; 162(3):220-5. PubMed ID: 23454811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The biodiversity of Aspergillus section Flavi and aflatoxins in the Brazilian peanut production chain.
    Martins LM; Sant'Ana AS; Fungaro MH; Silva JJ; Nascimento MD; Frisvad JC; Taniwaki MH
    Food Res Int; 2017 Apr; 94():101-107. PubMed ID: 28290359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detoxification of aflatoxin in corn flour by ozone.
    Luo X; Wang R; Wang L; Li Y; Wang Y; Chen Z
    J Sci Food Agric; 2014 Aug; 94(11):2253-8. PubMed ID: 24374809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid detection of aflatoxin producing fungi in food by real-time quantitative loop-mediated isothermal amplification.
    Luo J; Vogel RF; Niessen L
    Food Microbiol; 2014 Dec; 44():142-8. PubMed ID: 25084656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.