These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. In situ cell retention of a CHO culture by a reverse-flow diafiltration membrane bioreactor. Meier K; Djeljadini S; Regestein L; Büchs J; Carstensen F; Wessling M; Holland T; Raven N Biotechnol Prog; 2014; 30(6):1348-55. PubMed ID: 25202924 [TBL] [Abstract][Full Text] [Related]
25. Effect of micromechanical stimulations on osteoblasts: development of a device simulating the mechanical situation at the bone-implant interface. Pioletti DP; Müller J; Rakotomanana LR; Corbeil J; Wild E J Biomech; 2003 Jan; 36(1):131-5. PubMed ID: 12485648 [TBL] [Abstract][Full Text] [Related]
26. Constrained tibial vibration in mice: a method for studying the effects of vibrational loading of bone. Christiansen BA; Bayly PV; Silva MJ J Biomech Eng; 2008 Aug; 130(4):044502. PubMed ID: 18601464 [TBL] [Abstract][Full Text] [Related]
27. Vibrational stimulation induces osteoblast differentiation and the upregulation of osteogenic gene expression in vitro. Ota T; Chiba M; Hayashi H Cytotechnology; 2016 Dec; 68(6):2287-2299. PubMed ID: 27639712 [TBL] [Abstract][Full Text] [Related]
28. A simple-shear rheometer for linear viscoelastic characterization of vocal fold tissues at phonatory frequencies. Chan RW; Rodriguez ML J Acoust Soc Am; 2008 Aug; 124(2):1207-19. PubMed ID: 18681608 [TBL] [Abstract][Full Text] [Related]
29. A Pilot Study Assessing the Therapeutic Potential of a Vibratory Positive Expiratory Pressure Device (Acapella Choice) in the Treatment of Voice Disorders. Saccente-Kennedy B; Amarante Andrade P; Epstein R J Voice; 2020 May; 34(3):487.e21-487.e30. PubMed ID: 32389238 [TBL] [Abstract][Full Text] [Related]
30. An analysis of the strain field in biaxial Flexcell membranes for different waveforms and frequencies. Colombo A; Cahill PA; Lally C Proc Inst Mech Eng H; 2008 Nov; 222(8):1235-45. PubMed ID: 19143417 [TBL] [Abstract][Full Text] [Related]
31. Production of Nanoscale Vibration for Stimulation of Human Mesenchymal Stem Cells. Nikukar H; Childs PG; Curtis ASG; Martin IW; Riehle MO; Dalby MJ; Reid S J Biomed Nanotechnol; 2016 Jul; 12(7):1478-88. PubMed ID: 29337487 [TBL] [Abstract][Full Text] [Related]
32. Enhancing proliferation and ECM expression of human ACL fibroblasts by sonic vibration. Jiang YY; Park JK; Yoon HH; Choi H; Kim CW; Seo YK Prep Biochem Biotechnol; 2015; 45(5):476-90. PubMed ID: 24842289 [TBL] [Abstract][Full Text] [Related]
33. Production and in vitro evaluation of soy protein-based biofilms as a support for human keratinocyte and fibroblast culture. Curt S; Subirade M; Rouabhia M Tissue Eng Part A; 2009 Jun; 15(6):1223-32. PubMed ID: 18939936 [TBL] [Abstract][Full Text] [Related]
34. Use of orbital shaken disposable bioreactors for mammalian cell cultures from the milliliter-scale to the 1,000-liter scale. Zhang X; Stettler M; De Sanctis D; Perrone M; Parolini N; Discacciati M; De Jesus M; Hacker D; Quarteroni A; Wurm F Adv Biochem Eng Biotechnol; 2009; 115():33-53. PubMed ID: 19499209 [TBL] [Abstract][Full Text] [Related]
35. Using the relaxation oscillations principle for simple phonation modeling. Garrel R; Scherer R; Nicollas R; Giovanni A; Ouaknine M J Voice; 2008 Jul; 22(4):385-98. PubMed ID: 17280814 [TBL] [Abstract][Full Text] [Related]
36. Dynamic B-mode ultrasound imaging of vocal fold vibration during phonation. Tsai CG; Chen JH; Shau YW; Hsiao TY Ultrasound Med Biol; 2009 Nov; 35(11):1812-8. PubMed ID: 19716224 [TBL] [Abstract][Full Text] [Related]
37. Adhesion of a monolayer of fibroblast cells to fibronectin under sonic vibrations in a bioreactor. Titze IR; Klemuk SA; Lu X Ann Otol Rhinol Laryngol; 2012 Jun; 121(6):364-74. PubMed ID: 22737958 [TBL] [Abstract][Full Text] [Related]