These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22095876)

  • 21. The effect of alkaline earth metal ion dopants on photocatalytic water splitting by NaTaO(3) powder.
    Iwase A; Kato H; Kudo A
    ChemSusChem; 2009; 2(9):873-7. PubMed ID: 19731285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading.
    Okamoto Y; Ida S; Hyodo J; Hagiwara H; Ishihara T
    J Am Chem Soc; 2011 Nov; 133(45):18034-7. PubMed ID: 21999601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing the deposition of hydrogen evolution sites on suspended semiconductor particles using on-line photocatalytic reforming of aqueous methanol solutions.
    Busser GW; Mei B; Muhler M
    ChemSusChem; 2012 Nov; 5(11):2200-6. PubMed ID: 23090922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A dyad as photocatalyst for light-driven sulfide oxygenation with water as the unique oxygen atom source.
    Hamelin O; Guillo P; Loiseau F; Boissonnet MF; Ménage S
    Inorg Chem; 2011 Sep; 50(17):7952-4. PubMed ID: 21793512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photocatalytic generation of a non-heme oxoiron(IV) complex with water as an oxygen source.
    Kotani H; Suenobu T; Lee YM; Nam W; Fukuzumi S
    J Am Chem Soc; 2011 Mar; 133(10):3249-51. PubMed ID: 21329389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.
    Cortright RD; Davda RR; Dumesic JA
    Nature; 2002 Aug; 418(6901):964-7. PubMed ID: 12198544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels.
    Varghese OK; Paulose M; Latempa TJ; Grimes CA
    Nano Lett; 2009 Feb; 9(2):731-7. PubMed ID: 19173633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Remote Hydroxylation through Radical Translocation and Polar Crossover.
    Hollister KA; Conner ES; Spell ML; Deveaux K; Maneval L; Beal MW; Ragains JR
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7837-41. PubMed ID: 26014758
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sustained water oxidation photocatalysis by a bioinspired manganese cluster.
    Brimblecombe R; Swiegers GF; Dismukes GC; Spiccia L
    Angew Chem Int Ed Engl; 2008; 47(38):7335-8. PubMed ID: 18677726
    [No Abstract]   [Full Text] [Related]  

  • 30. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass.
    Navarro RM; Peña MA; Fierro JL
    Chem Rev; 2007 Oct; 107(10):3952-91. PubMed ID: 17715983
    [No Abstract]   [Full Text] [Related]  

  • 31. Effects of distortion of metal-oxygen octahedra on photocatalytic water-splitting performance of RuO2-loaded niobium and tantalum phosphate bronzes.
    Nishiyama H; Kobayashi H; Inoue Y
    ChemSusChem; 2011 Feb; 4(2):208-15. PubMed ID: 21328551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of combustible hydrocarbons and H2 during photocatalytic decomposition of various organic compounds under aerated and deaerated conditions.
    Mozia S; Kułagowska A; Morawski AW
    Molecules; 2014 Nov; 19(12):19633-47. PubMed ID: 25432013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly efficient photocatalytic oxygenation reactions using water as an oxygen source.
    Fukuzumi S; Kishi T; Kotani H; Lee YM; Nam W
    Nat Chem; 2011 Jan; 3(1):38-41. PubMed ID: 21160515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A nickel thiolate catalyst for the long-lived photocatalytic production of hydrogen in a noble-metal-free system.
    Han Z; McNamara WR; Eum MS; Holland PL; Eisenberg R
    Angew Chem Int Ed Engl; 2012 Feb; 51(7):1667-70. PubMed ID: 22237945
    [No Abstract]   [Full Text] [Related]  

  • 35. Photosensitized water oxidation by use of a bioinspired manganese catalyst.
    Karlsson EA; Lee BL; Åkermark T; Johnston EV; Kärkäs MD; Sun J; Hansson Ö; Bäckvall JE; Åkermark B
    Angew Chem Int Ed Engl; 2011 Dec; 50(49):11715-8. PubMed ID: 21983946
    [No Abstract]   [Full Text] [Related]  

  • 36. Synchrotron photoionization mass spectrometry study of intermediates in fuel-rich 1,2-dimethoxyethane flame.
    Lin ZK; Han DL; Li SF; Li YY; Yuan T
    J Chem Phys; 2009 Apr; 130(15):154306. PubMed ID: 19388745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water adsorption onto Y and V sites at the surface of the YVO4 photocatalyst and related electronic properties.
    Oshikiri M; Boero M; Matsushita A; Ye J
    J Chem Phys; 2009 Jul; 131(3):034701. PubMed ID: 19624215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the similarity and dissimilarity between photocatalytic water splitting and photocatalytic degradation of pollutants.
    Pasternak S; Paz Y
    Chemphyschem; 2013 Jul; 14(10):2059-70. PubMed ID: 23754793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water Will Be the Coal of the Future-The Untamed Dream of Jules Verne for a Solar Fuel.
    Ryabchuk VK; Kuznetsov VN; Emeline AV; Artem'ev YM; Kataeva GV; Horikoshi S; Serpone N
    Molecules; 2016 Nov; 21(12):. PubMed ID: 27916848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water splitting over new niobate photocatalysts with tungsten-bronze-type structure and effect of transition metal-doping.
    Miseki Y; Kudo A
    ChemSusChem; 2011 Feb; 4(2):245-51. PubMed ID: 20936645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.