BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 22095922)

  • 1. Direct writing by way of melt electrospinning.
    Brown TD; Dalton PD; Hutmacher DW
    Adv Mater; 2011 Dec; 23(47):5651-7. PubMed ID: 22095922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing.
    Brown TD; Edin F; Detta N; Skelton AD; Hutmacher DW; Dalton PD
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():698-708. PubMed ID: 25491879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melt Electrospinning Writing of Poly-Hydroxymethylglycolide-co-ε-Caprolactone-Based Scaffolds for Cardiac Tissue Engineering.
    Castilho M; Feyen D; Flandes-Iparraguirre M; Hochleitner G; Groll J; Doevendans PAF; Vermonden T; Ito K; Sluijter JPG; Malda J
    Adv Healthc Mater; 2017 Sep; 6(18):. PubMed ID: 28699224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Scaffolds Using Melt Electrospinning Writing and Cell Seeding.
    Bolle ECL; Nicdao D; Dalton PD; Dargaville TR
    Methods Mol Biol; 2021; 2147():111-124. PubMed ID: 32840814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode.
    Farrugia BL; Brown TD; Upton Z; Hutmacher DW; Dalton PD; Dargaville TR
    Biofabrication; 2013 Jun; 5(2):025001. PubMed ID: 23443534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures.
    Chen F; Hochleitner G; Woodfield T; Groll J; Dalton PD; Amsden BG
    Biomacromolecules; 2016 Jan; 17(1):208-14. PubMed ID: 26620885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and fabrication of tubular scaffolds via direct writing in a melt electrospinning mode.
    Brown TD; Slotosch A; Thibaudeau L; Taubenberger A; Loessner D; Vaquette C; Dalton PD; Hutmacher DW
    Biointerphases; 2012 Dec; 7(1-4):13. PubMed ID: 22589056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing.
    Hochleitner G; Jüngst T; Brown TD; Hahn K; Moseke C; Jakob F; Dalton PD; Groll J
    Biofabrication; 2015 Jun; 7(3):035002. PubMed ID: 26065373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterned melt electrospun substrates for tissue engineering.
    Dalton PD; Joergensen NT; Groll J; Moeller M
    Biomed Mater; 2008 Sep; 3(3):034109. PubMed ID: 18689917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melt electrospinning of biodegradable polyurethane scaffolds.
    Karchin A; Simonovsky FI; Ratner BD; Sanders JE
    Acta Biomater; 2011 Sep; 7(9):3277-84. PubMed ID: 21640853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additive manufacturing with polypropylene microfibers.
    Haigh JN; Dargaville TR; Dalton PD
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():883-887. PubMed ID: 28532105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospinning of aligned biodegradable polymer fibers and composite fibers for tissue engineering applications.
    Tong HW; Wang M
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3834-40. PubMed ID: 18047070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Studies on the morphology and structure of electrospun poly (3-hydroxybutyrate)/soya protein isolates fibers].
    Li M; Li Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):607-11. PubMed ID: 17713272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning.
    Thomas V; Jose MV; Chowdhury S; Sullivan JF; Dean DR; Vohra YK
    J Biomater Sci Polym Ed; 2006; 17(9):969-84. PubMed ID: 17094636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melt Electrospinning Writing of Three-dimensional Poly(ε-caprolactone) Scaffolds with Controllable Morphologies for Tissue Engineering Applications.
    Wunner FM; Bas O; Saidy NT; Dalton PD; Pardo EMD; Hutmacher DW
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29364204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of melt electrospun writing fiber orientation onto cellular organization and mechanical properties for application in Anterior Cruciate Ligament tissue engineering.
    Gwiazda M; Kumar S; Świeszkowski W; Ivanovski S; Vaquette C
    J Mech Behav Biomed Mater; 2020 Apr; 104():103631. PubMed ID: 32174392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of sagging in melt-electrospinning of microfiber scaffolds.
    Nguyen NT; Kim JH; Jeong YH
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109785. PubMed ID: 31349447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymers for Melt Electrowriting.
    Kade JC; Dalton PD
    Adv Healthc Mater; 2021 Jan; 10(1):e2001232. PubMed ID: 32940962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of poly (ϵ-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications.
    Ko J; Mohtaram NK; Ahmed F; Montgomery A; Carlson M; Lee PC; Willerth SM; Jun MB
    J Biomater Sci Polym Ed; 2014; 25(1):1-17. PubMed ID: 23998440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.