BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2209619)

  • 1. NADP-dependent malate dehydrogenase (decarboxylating) from sugar cane leaves. Kinetic properties of different oligomeric structures.
    Iglesias AA; Andreo CS
    Eur J Biochem; 1990 Sep; 192(3):729-33. PubMed ID: 2209619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the quaternary structure of phosphoenolpyruvate carboxylase induced by ionic strength affect its catalytic activity.
    Wagner R; Gonzalez DH; Podesta FE; Andreo CS
    Eur J Biochem; 1987 May; 164(3):661-6. PubMed ID: 3569281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADP(+)-malic enzyme from sugarcane leaves: structural properties studied by thermal inactivation.
    Iglesias AA; Spampinato CP; Andreo CS
    Arch Biochem Biophys; 1991 Nov; 290(2):272-6. PubMed ID: 1929396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the activity of NAD malic enzyme from solanum tuberosum by changes in oligomeric state.
    Grover SD; Wedding RT
    Arch Biochem Biophys; 1984 Nov; 234(2):418-25. PubMed ID: 6497380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and 'malic' enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis.
    Johnson HS; Hatch MD
    Biochem J; 1970 Sep; 119(2):273-80. PubMed ID: 4395182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of C4 photosynthesis: physical and kinetic properties of active (dithiol) and inactive (disulfide) NADP-malate dehydrogenase from Zea mays.
    Ashton AR; Hatch MD
    Arch Biochem Biophys; 1983 Dec; 227(2):406-15. PubMed ID: 6667024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limited proteolysis of inactive tetrameric chloroplast NADP-malate dehydrogenase produces active dimers.
    Fickenscher K; Scheibe R
    Arch Biochem Biophys; 1988 Feb; 260(2):771-9. PubMed ID: 3341764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting the oligomeric state of NADP-malic enzyme from maize and wheat tissues: a chemical crosslinking study.
    Spampinato CP; Casati P; Andreo CS
    Biochim Biophys Acta; 1998 Apr; 1383(2):245-52. PubMed ID: 9602140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study of properties of NADP malate dehydrogenase from corn leaves].
    Persanov VM; Voronova EA; Karpilov IuS
    Biokhimiia; 1976 Jul; 41(6):1014-22. PubMed ID: 17432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the molecular relationships between malate and lactate dehydrogenases: structural and biochemical properties of monomeric and dimeric intermediates of a mutant of tetrameric L-[LDH-like] malate dehydrogenase from the halophilic archaeon Haloarcula marismortui.
    Madern D; Ebel C; Mevarech M; Richard SB; Pfister C; Zaccai G
    Biochemistry; 2000 Feb; 39(5):1001-10. PubMed ID: 10653644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation.
    Brown DA; Cook RA
    Biochemistry; 1981 Apr; 20(9):2503-12. PubMed ID: 7016178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of phosphoenolpyruvate carboxylase from Crassula by interconversion of oligomeric forms.
    Wu MX; Wedding RT
    Arch Biochem Biophys; 1985 Aug; 240(2):655-62. PubMed ID: 4026299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of biosynthesis of secondary metabolites. XVII. Purification and properties of malate dehydrogenase (decarboxylating) in Streptomyces aureofaciens.
    Jechová V; Hostálek Z; Vanĕk Z
    Folia Microbiol (Praha); 1975; 20(2):137-41. PubMed ID: 240762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium substrate binding studies of the malic enzyme of pigeon liver. Equivalence of nucleotide sites and anticooperativity associated with the binding of L-malate to the enzyme-manganese(II)-reduced nicotinamide adenine dinucleotide phosphate ternary complex.
    Pry TA; Hsu RY
    Biochemistry; 1980 Mar; 19(5):951-62. PubMed ID: 7356971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Purification and properties of NADP-specific malate dehydrogenase from bovine adrenal cortex mitochondria].
    Senkevich SB
    Biokhimiia; 1988 Nov; 53(11):1783-90. PubMed ID: 3251546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Various kinetic and spectral-fluorescent properties of NADP-dependent malate dehydrogenase from bovine adrenal cortex cytoplasm].
    Senkevich SB; Strumilo SA; Zavodnik IB; Vinogradov VV
    Biokhimiia; 1986 Sep; 51(9):1534-40. PubMed ID: 3768444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of 'malic' enzyme of Solanum tuberosum by metabolites.
    Davies DD; Patil KD
    Biochem J; 1974 Jan; 137(1):45-53. PubMed ID: 4150731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Roles of Metabolic Intermediates in Regulating the Human Mitochondrial NAD(P)
    Hsieh JY; Shih WT; Kuo YH; Liu GY; Hung HC
    Sci Rep; 2019 Jun; 9(1):9081. PubMed ID: 31235710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional roles of the tetramer organization of malic enzyme.
    Hsieh JY; Chen SH; Hung HC
    J Biol Chem; 2009 Jul; 284(27):18096-105. PubMed ID: 19416979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [NADP-dependent malate dehydrogenase from bovine adrenal cortex cytoplasm. Isolation and properties].
    Senkevich SB; Strumilo SA; Vinogradov VV
    Biokhimiia; 1986 Jun; 51(6):1023-8. PubMed ID: 3730435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.