These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 220965)

  • 21. N-acetyl-D-glucosamine-induced morphogenesis in Candida albicans.
    Cassone A; Sullivan PA; Shepherd MG
    Microbiologica; 1985 Jan; 8(1):85-99. PubMed ID: 3883103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inducible N-acetyglucosamine-binding protein in yeasts.
    Singh B; Biswas M; Datta A
    J Bacteriol; 1980 Oct; 144(1):1-6. PubMed ID: 6998941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antibiotic tetaine--a selective inhibitor of chitin and mannoprotein biosynthesis in Candida albicans.
    Milewski S; Chmara H; Borowski E
    Arch Microbiol; 1986 Aug; 145(3):234-40. PubMed ID: 3532988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Induction of germ tube formation by N-acetyl-D-glucosamine in Candida albicans: uptake of inducer and germinative response.
    Mattia E; Carruba G; Angiolella L; Cassone A
    J Bacteriol; 1982 Nov; 152(2):555-62. PubMed ID: 6752114
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chitinase activity from Candida albicans and its inhibition by allosamidin.
    Dickinson K; Keer V; Hitchcock CA; Adams DJ
    J Gen Microbiol; 1989 Jun; 135(6):1417-21. PubMed ID: 2693599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The requirements for bicarbonate and metabolism of the inducer during germ tube formation by Candida albicans.
    Pollack JH; Hashimoto T
    Can J Microbiol; 1988 Nov; 34(11):1183-8. PubMed ID: 2850098
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Induction of hyphal transformation, uptake and incorporation of N-acetyl-D-glucosamine in Candida albicans].
    Mattia E; Carruba G; Angiolella L; Cassone A
    Ann Ist Super Sanita; 1982; 18(3):493-6. PubMed ID: 6765081
    [No Abstract]   [Full Text] [Related]  

  • 28. Regulation of N-acetylglucosaminidase production in Candida albicans.
    Niimi K; Niimi M; Shepherd MG; Cannon RD
    Arch Microbiol; 1997 Dec; 168(6):464-72. PubMed ID: 9385137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. N-acetylglucosamine-6-phosphate deacetylase and glucosamine-6-phosphate deaminase from Escherichia coli.
    White RJ; Pasternak CA
    Methods Enzymol; 1975; 41():497-502. PubMed ID: 236479
    [No Abstract]   [Full Text] [Related]  

  • 30. Mutations affecting amino sugar metabolism in Escherichia coli K-12.
    Holmes RP; Russell RR
    J Bacteriol; 1972 Jul; 111(1):290-1. PubMed ID: 4591481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of the N-acetylglucosamine kinase (Hxk1) in the regulation of white-gray-opaque tristable phenotypic transitions in C. albicans.
    Cao C; Guan G; Du H; Tao L; Huang G
    Fungal Genet Biol; 2016 Jul; 92():26-32. PubMed ID: 27153757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Induction of N-acetylglucosamine-6-phosphate deacetylase in yeast.
    Rai YP; Datta A
    Indian J Biochem Biophys; 1982 Aug; 19(4):285-7. PubMed ID: 6762336
    [No Abstract]   [Full Text] [Related]  

  • 33. The secretion of N-acetylglucosaminidase during germ-tube formation in Candida albicans.
    Sullivan PA; McHugh NJ; Romana LK; Shepherd MG
    J Gen Microbiol; 1984 Sep; 130(9):2213-8. PubMed ID: 6389758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein synthesis and amino acid pool during yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida albicans.
    Torosantucci A; Angiolella L; Filesi C; Cassone A
    J Gen Microbiol; 1984 Dec; 130(12):3285-93. PubMed ID: 6394717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variations in the response to N-acetyl-D-glucosamine by isolates of Candida albicans.
    Wain WH; Brayton AR; Cawson RA
    Mycopathologia; 1976 Jun; 58(1):27-9. PubMed ID: 778622
    [No Abstract]   [Full Text] [Related]  

  • 36. Induction of mycelial type of development in Candida albicans by the antibiotic monorden and N-acetyl-D-glucosamine.
    Hrmová M; Drobnica L
    Mycopathologia; 1982 Jul; 79(1):55-64. PubMed ID: 6750407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates.
    Alvarez-Añorve LI; Calcagno ML; Plumbridge J
    J Bacteriol; 2005 May; 187(9):2974-82. PubMed ID: 15838023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and structure of glucan from regenerating spheroplasts of Candida albicans.
    Gopal P; Sullivan PA; Shepherd MG
    J Gen Microbiol; 1984 May; 130(5):1217-25. PubMed ID: 6381644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolism of [14C]glucose by regenerating spheroplasts of Candida albicans.
    Gopal P; Sullivan PA; Shepherd MG
    J Gen Microbiol; 1984 Feb; 130(2):325-35. PubMed ID: 6427397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Upregulation of galactose metabolic pathway by N-acetylglucosamine induced endogenous synthesis of galactose in Candida albicans.
    Kamthan M; Kamthan A; Ruhela D; Maiti P; Bhavesh NS; Datta A
    Fungal Genet Biol; 2013 May; 54():15-24. PubMed ID: 23454545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.