BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22096566)

  • 1. Distribution and characterization of progenitor cells within the human filum terminale.
    Arvidsson L; Fagerlund M; Jaff N; Ossoinak A; Jansson K; Hägerstrand A; Johansson CB; Brundin L; Svensson M
    PLoS One; 2011; 6(11):e27393. PubMed ID: 22096566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons.
    Jha RM; Liu X; Chrenek R; Madsen JR; Cardozo DL
    Neurosurgery; 2013 Jan; 72(1):118-29; discussion 129. PubMed ID: 23096415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the Filum terminale as a neural progenitor cell niche in both rats and humans.
    Chrenek R; Magnotti LM; Herrera GR; Jha RM; Cardozo DL
    J Comp Neurol; 2017 Feb; 525(3):661-675. PubMed ID: 27511739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ventriculus terminalis and filum terminale of the human spinal cord.
    Choi BH; Kim RC; Suzuki M; Choe W
    Hum Pathol; 1992 Aug; 23(8):916-20. PubMed ID: 1644436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The isolation, differentiation, and survival in vivo of multipotent cells from the postnatal rat filum terminale.
    Jha RM; Chrenek R; Magnotti LM; Cardozo DL
    PLoS One; 2013; 8(6):e65974. PubMed ID: 23762453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane currents and morphological properties of neurons and glial cells in the spinal cord and filum terminale of the frog.
    Chvátal A; Andĕrová M; Ziak D; Orkand RK; Syková E
    Neurosci Res; 2001 May; 40(1):23-35. PubMed ID: 11311402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of human multipotent neural progenitors from adult filum terminale.
    Varghese M; Olstorn H; Berg-Johnsen J; Moe MC; Murrell W; Langmoen IA
    Stem Cells Dev; 2009 May; 18(4):603-13. PubMed ID: 18652547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures of filum terminale and characteristics of ependymal cells of its central canal in rats.
    Nakano N; Kanekiyo K; Yamada Y; Tamachi M; Suzuki Y; Fukushima M; Saito F; Abe S; Tsukagoshi C; Miyamoto C; Ide C
    Brain Res; 2019 Mar; 1707():208-215. PubMed ID: 30500401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gross and microscopic study of the filum terminale: does the filum contain functional neural elements?
    Gaddam SS; Santhi V; Babu S; Chacko G; Baddukonda RA; Rajshekhar V
    J Neurosurg Pediatr; 2012 Jan; 9(1):86-92. PubMed ID: 22208327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ependymal cells variations in the central canal of the rat spinal cord filum terminale: an ultrastructural investigation.
    Mitro A; Gallatz K; Palkovits M; Kiss A
    Endocr Regul; 2013 Apr; 47(2):93-9. PubMed ID: 23641790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular diffusion parameters in spinal cord and filum terminale of the frog.
    Prokopová-Kubinová S; Syková E
    J Neurosci Res; 2000 Nov; 62(4):530-8. PubMed ID: 11070496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Choroid plexus ependymal cells host neural progenitor cells in the rat.
    Itokazu Y; Kitada M; Dezawa M; Mizoguchi A; Matsumoto N; Shimizu A; Ide C
    Glia; 2006 Jan; 53(1):32-42. PubMed ID: 16158416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cutting filum terminale is very important in split cord malformation cases to achieve total release.
    Barutcuoglu M; Selcuki M; Selcuki D; Umur S; Mete M; Gurgen SG; Umur
    Childs Nerv Syst; 2015 Mar; 31(3):425-32. PubMed ID: 25466279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurochemical architecture of the filum terminale in the rat.
    Boros C; Lukácsi E; Horváth-Oszwald E; Réthelyi M
    Brain Res; 2008 May; 1209():105-14. PubMed ID: 18405885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric field stimulation induced neuronal differentiation of filum terminale derived neural progenitor cells.
    Dong ZY; Pei Z; Li Z; Wang YL; Khan A; Meng XT
    Neurosci Lett; 2017 Jun; 651():109-115. PubMed ID: 28476410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of tethered cord release on coronal spinal balance in tight filum terminale.
    Chern JJ; Dauser RC; Whitehead WE; Curry DJ; Luerssen TG; Jea A
    Spine (Phila Pa 1976); 2011 Jun; 36(14):E944-9. PubMed ID: 21289577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The caudal end of the rat spinal cord: transformation to and ultrastructure of the filum terminale.
    Réthelyi M; Lukácsi E; Boros C
    Brain Res; 2004 Dec; 1028(2):133-9. PubMed ID: 15527738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Astrocytes in injured adult rat spinal cord may acquire the potential of neural stem cells.
    Lang B; Liu HL; Liu R; Feng GD; Jiao XY; Ju G
    Neuroscience; 2004; 128(4):775-83. PubMed ID: 15464285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Lumbosacral Magnetic Resonance Imaging in a Dog with Tethered Cord Syndrome with a Tight Filum Terminale.
    De Decker S; Watts V; Neilson DM
    Front Vet Sci; 2017; 4():134. PubMed ID: 28868301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is a filum terminale with a normal appearance really normal?
    Selçuki M; Vatansever S; Inan S; Erdemli E; Bağdatoğlu C; Polat A
    Childs Nerv Syst; 2003 Jan; 19(1):3-10. PubMed ID: 12541079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.