BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22096988)

  • 1. [Synthesis of biosynthetic precursors of red fluorescent proteins' chromophores].
    Ivashkin PE; Luk'ianov KA; Iampolskiĭ IV
    Bioorg Khim; 2011; 37(4):464-74. PubMed ID: 22096988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative cyclization in GFP-like proteins family. The formation and structure of the chromophore of a purple chromoprotein from Anemonia sulcata.
    Martynov VI; Savitsky AP; Martynova NY; Savitsky PA; Lukyanov KA; Lukyanov SA
    J Biol Chem; 2001 Jun; 276(24):21012-6. PubMed ID: 11259412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Synthesis of the chromophores of fluorescent proteins and their analogs].
    Baranov MS; Luk'ianov KA; Iampol'skiĭ IV
    Bioorg Khim; 2013; 39(3):255-76. PubMed ID: 24397025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation.
    Tubbs JL; Tainer JA; Getzoff ED
    Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blue fluorescent protein analogs as chemosensors for Zn²⁺.
    Fang X; Li H; Zhao G; Fang X; Xu J; Yang W
    Biosens Bioelectron; 2013 Apr; 42():308-13. PubMed ID: 23208103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and spectroscopic studies of model red fluorescent protein chromophores.
    He X; Bell AF; Tonge PJ
    Org Lett; 2002 May; 4(9):1523-6. PubMed ID: 11975619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A synthetic GFP-like chromophore undergoes base-catalyzed autoxidation into acylimine red form.
    Ivashkin PE; Lukyanov KA; Lukyanov S; Yampolsky IV
    J Org Chem; 2011 Apr; 76(8):2782-91. PubMed ID: 21391723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Synthesis and properties of chromophores of fluorescent proteins].
    Ivashkin PE; Iampol'skiĭ IV; Luk'ianov KA
    Bioorg Khim; 2009; 35(6):726-43. PubMed ID: 20208574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Fluorescent Green Fluorescent Protein Chromophore Analogues Made by Decorating the Imidazolone Ring.
    Gutiérrez S; Martínez-López D; Morón M; Sucunza D; Sampedro D; Domingo A; Salgado A; Vaquero JJ
    Chemistry; 2015 Dec; 21(51):18758-63. PubMed ID: 26525155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phosphine-catalyzed preparation of 4-arylidene-5-imidazolones.
    Gabillet S; Loreau O; Specklin S; Rasalofonjatovo E; Taran F
    J Org Chem; 2014 Oct; 79(20):9894-8. PubMed ID: 25238600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic diversity of red fluorescence acquisition by GFP-like proteins.
    Wachter RM; Watkins JL; Kim H
    Biochemistry; 2010 Sep; 49(35):7417-27. PubMed ID: 20666493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromophore aspartate oxidation-decarboxylation in the green-to-red conversion of a fluorescent protein from Zoanthus sp. 2.
    Pakhomov AA; Martynov VI
    Biochemistry; 2007 Oct; 46(41):11528-35. PubMed ID: 17892303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and properties of the red chromophore of the green-to-red photoconvertible fluorescent protein Kaede and its analogs.
    Yampolsky IV; Kislukhin AA; Amatov TT; Shcherbo D; Potapov VK; Lukyanov S; Lukyanov KA
    Bioorg Chem; 2008 Apr; 36(2):96-104. PubMed ID: 18262585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic excitations of green fluorescent proteins: modeling solvatochromatic shifts of red fluorescent protein chromophore model compound in aqueous solutions.
    Yan W; Zhang L; Xie D; Zeng J
    J Phys Chem B; 2007 Dec; 111(50):14055-63. PubMed ID: 18044868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus.
    Pletneva N; Pletnev V; Tikhonova T; Pakhomov AA; Popov V; Martynov VI; Wlodawer A; Dauter Z; Pletnev S
    Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1082-93. PubMed ID: 17881826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent protein red Kaede chromophore; one-step, high-yield synthesis and potential application for solar cells.
    Chuang WT; Chen BS; Chen KY; Hsieh CC; Chou PT
    Chem Commun (Camb); 2009 Dec; (45):6982-4. PubMed ID: 19904368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance CARS study of the structure of "green" and "red" chromophores within the red fluorescent protein DsRed.
    Kruglik SG; Subramaniam V; Greve J; Otto C
    J Am Chem Soc; 2002 Sep; 124(37):10992-3. PubMed ID: 12224942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative chemistry in the GFP active site leads to covalent cross-linking of a modified leucine side chain with a histidine imidazole: implications for the mechanism of chromophore formation.
    Rosenow MA; Patel HN; Wachter RM
    Biochemistry; 2005 Jun; 44(23):8303-11. PubMed ID: 15938620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation.
    Rosenow MA; Huffman HA; Phail ME; Wachter RM
    Biochemistry; 2004 Apr; 43(15):4464-72. PubMed ID: 15078092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Traditional GFP-type cyclization and unexpected fragmentation site in a purple chromoprotein from Anemonia sulcata, asFP595.
    Zagranichny VE; Rudenko NV; Gorokhovatsky AY; Zakharov MV; Balashova TA; Arseniev AS
    Biochemistry; 2004 Oct; 43(42):13598-603. PubMed ID: 15491166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.