These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22097028)

  • 21. Modelling of sedimentation and remobilization in in-line storage sewers for stormwater treatment.
    Frehmann T; Flores C; Luekewille F; Mietzel T; Spengler B; Geiger WF
    Water Sci Technol; 2005; 52(5):151-8. PubMed ID: 16248191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling of biofilters for ammonium reduction in combined sewer overflow.
    Henrichs M; Welker A; Uhl M
    Water Sci Technol; 2009; 60(3):825-31. PubMed ID: 19657178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An application of Austrian legal requirements for CSO emissions.
    Kleidorfer M; Rauch W
    Water Sci Technol; 2011; 64(5):1081-8. PubMed ID: 22214054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Statistical models to predict discharge overflow.
    Szeląg B; Bąk Ł; Suligowski R; Górski J
    Water Sci Technol; 2018 Oct; 78(5-6):1208-1218. PubMed ID: 30339545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional model to capture the fate and transport of combined sewer overflow discharges: A case study in the Chicago Area Waterway System.
    Quijano JC; Zhu Z; Morales V; Landry BJ; Garcia MH
    Sci Total Environ; 2017 Jan; 576():362-373. PubMed ID: 27794225
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using data from monitoring combined sewer overflows to assess, improve, and maintain combined sewer systems.
    Montserrat A; Bosch L; Kiser MA; Poch M; Corominas L
    Sci Total Environ; 2015 Feb; 505():1053-61. PubMed ID: 25461106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long term monitoring of sewer sediment accumulation and flushing experiments in a man-entry sewer.
    Bertrand-Krajewski JL; Bardin JP; Gibello C
    Water Sci Technol; 2006; 54(6-7):109-17. PubMed ID: 17120640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of hydrodynamic vortex separators and screening systems to improve water quality.
    Andoh RY; Saul AJ
    Water Sci Technol; 2003; 47(4):175-83. PubMed ID: 12666815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling climate change impacts on combined sewer overflow using synthetic precipitation time series.
    Bendel D; Beck F; Dittmer U
    Water Sci Technol; 2013; 68(1):160-6. PubMed ID: 23823552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling sewer sediment deposition, erosion, and transport processes to predict acute influent and reduce combined sewer overflows and CO(2) emissions.
    Mouri G; Oki T
    Water Sci Technol; 2010; 62(10):2346-56. PubMed ID: 21076221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A generic methodology for the optimisation of sewer systems using stochastic programming and self-optimizing control.
    Mauricio-Iglesias M; Montero-Castro I; Mollerup AL; Sin G
    J Environ Manage; 2015 May; 155():193-203. PubMed ID: 25840844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification of pollution loads from CSOs into surface water bodies by means of online techniques.
    Gruber G; Winkler S; Pressl A
    Water Sci Technol; 2004; 50(11):73-80. PubMed ID: 15685982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental analysis of the hydrass flushing gate and field validation of flush propagation modelling.
    Bertrand-Krajewski JL; Campisano A; Creaco E; Modica C
    Water Sci Technol; 2005; 51(2):129-37. PubMed ID: 15790236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of biodegradability of sewer solids for the management of CSOs.
    Sakrabani R; Ashley RM; Vollertsen J
    Water Sci Technol; 2005; 51(2):89-97. PubMed ID: 15790232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combination of computational techniques--evaluation of CSO efficiency for suspended solids separation.
    Pollert I; Stránský D
    Water Sci Technol; 2003; 47(4):157-66. PubMed ID: 12666813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A method for the numerical assessment of sediment interceptors.
    Faram MG; Harwood R
    Water Sci Technol; 2003; 47(4):167-74. PubMed ID: 12666814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modelling of flushing waves for optimising cleaning operations.
    Dettmar J; Staufer P
    Water Sci Technol; 2005; 52(5):233-40. PubMed ID: 16248200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of conventional rule based flow control with control processes based on fuzzy logic in a combined sewer system.
    Klepiszewski K; Schmitt TG
    Water Sci Technol; 2002; 46(6-7):77-84. PubMed ID: 12380977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental analysis of the hydrass flushing gate and laboratory validation of flush propagation modelling.
    Campisano A; Creaco E; Modica C
    Water Sci Technol; 2006; 54(6-7):101-8. PubMed ID: 17120639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of nutrients from combined sewer overflows and lake water in a vertical-flow constructed wetland system.
    Gervin L; Brix H
    Water Sci Technol; 2001; 44(11-12):171-6. PubMed ID: 11804090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.