These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22097062)

  • 21. Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell.
    Pant D; Arslan D; Van Bogaert G; Gallego YA; De Wever H; Diels L; Vanbroekhoven K
    Environ Technol; 2013; 34(13-16):1935-45. PubMed ID: 24350447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.
    Lee YY; Kim TG; Cho KS
    J Biotechnol; 2015 Oct; 211():130-7. PubMed ID: 26235818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electricity generation in single-chamber microbial fuel cells using a carbon source sampled from anaerobic reactors utilizing grass silage.
    Catal T; Cysneiros D; O'Flaherty V; Leech D
    Bioresour Technol; 2011 Jan; 102(1):404-10. PubMed ID: 20667712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of Volatile Fatty Acids Production from Food Waste by Mature Compost Addition.
    Cheah YK; Dosta J; Mata-Álvarez J
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31426488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.
    Logan B; Cheng S; Watson V; Estadt G
    Environ Sci Technol; 2007 May; 41(9):3341-6. PubMed ID: 17539547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An integrated approach for waste activated sludge management towards electric energy production/resource reuse.
    Xin X; Hong J; He J; Qiu W
    Bioresour Technol; 2019 Feb; 274():225-231. PubMed ID: 30508749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electricity generation from sweet potato-shochu waste using microbial fuel cells.
    Iigatani R; Ito T; Watanabe F; Nagamine M; Suzuki Y; Inoue K
    J Biosci Bioeng; 2019 Jul; 128(1):56-63. PubMed ID: 30737116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Butyrate production and purification by combining dry fermentation of food waste with a microbial fuel cell.
    Hussain A; Lee J; Xiong Z; Wang Y; Lee HS
    J Environ Manage; 2021 Dec; 300():113827. PubMed ID: 34649320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Application of microbial fuel cell (MFC) in solid waste composting].
    Cui J; Wang X; Tang J
    Sheng Wu Gong Cheng Xue Bao; 2012 Mar; 28(3):295-304. PubMed ID: 22712388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of electricity during wastewater treatment using a single chamber microbial fuel cell.
    Liu H; Ramnarayanan R; Logan BE
    Environ Sci Technol; 2004 Apr; 38(7):2281-5. PubMed ID: 15112835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron donation characteristics and interplays of major volatile fatty acids from anaerobically fermented organic matters in bioelectrochemical systems.
    Zhang Z; Li J; Hao X; Gu Z; Xia S
    Environ Technol; 2019 Jul; 40(18):2337-2344. PubMed ID: 29441823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leachate treatment and electricity generation using an algae-cathode microbial fuel cell with continuous flow through the chambers in series.
    Nguyen HTH; Min B
    Sci Total Environ; 2020 Jun; 723():138054. PubMed ID: 32222505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of microbial fuel cell coupled with aeration chamber and bio-cathode for organic matter and nitrogen removal from synthetic domestic wastewater.
    Cha J; Kim C; Choi S; Lee G; Chen G; Lee T
    Water Sci Technol; 2009; 60(6):1409-18. PubMed ID: 19759443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Open air biocathode enables effective electricity generation with microbial fuel cells.
    Clauwaert P; Van der Ha D; Boon N; Verbeken K; Verhaege M; Rabaey K; Verstraete W
    Environ Sci Technol; 2007 Nov; 41(21):7564-9. PubMed ID: 18044542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H; Logan BE
    Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effectiveness of piggery waste treatment using microbial fuel cells coupled with elutriated-phased acid fermentation.
    Chandrasekhar K; Ahn YH
    Bioresour Technol; 2017 Nov; 244(Pt 1):650-657. PubMed ID: 28810220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies.
    Oh SE; Logan BE
    Water Res; 2005 Nov; 39(19):4673-82. PubMed ID: 16289673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous electricity production from leachate in a novel upflow air-cathode membrane-free microbial fuel cell.
    Zhang JN; Zhao QL; You SJ; Jiang JQ; Ren NQ
    Water Sci Technol; 2008; 57(7):1017-21. PubMed ID: 18441427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics of acidogenic fermentation for volatile fatty acid production from food waste at high concentrations of NaCl.
    He X; Yin J; Liu J; Chen T; Shen D
    Bioresour Technol; 2019 Jan; 271():244-250. PubMed ID: 30273828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Performance of Electricity Generation and Feasibility of Discontinuous Power Supply of MFC by Using Pretreated Excess Sludge as Fuel].
    Zhao YH; Zhao YG; Guo L
    Huan Jing Ke Xue; 2016 Mar; 37(3):1156-62. PubMed ID: 27337913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.