These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 22097264)

  • 21. Optimising bioactive glass scaffolds for bone tissue engineering.
    Jones JR; Ehrenfried LM; Hench LL
    Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.
    Rezwan K; Chen QZ; Blaker JJ; Boccaccini AR
    Biomaterials; 2006 Jun; 27(18):3413-31. PubMed ID: 16504284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of different fabrication techniques used for processing 3-dimensional, porous, biodegradable scaffolds from modified starch for bone tissue engineering.
    Kunjachan V; Subramanian A; Hanna M; Guan JJ
    Biomed Sci Instrum; 2004; 40():129-35. PubMed ID: 15133947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration.
    Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD
    J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [The preparation of sintered bovine cancellous bone and a study of its mechanical and chemical behavior and biocompatibility].
    Zheng Q; Liu S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Feb; 22(1):95-8. PubMed ID: 15762125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Experimental study on the treatment of femur head necrosis with tricalcium phosphate and platelet-rich plasma].
    Tao H; Zhang C; Zeng B; Yuan T; Xu J; Song W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Mar; 19(3):170-3. PubMed ID: 15828467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: a quantitative study.
    Bai F; Wang Z; Lu J; Liu J; Chen G; Lv R; Wang J; Lin K; Zhang J; Huang X
    Tissue Eng Part A; 2010 Dec; 16(12):3791-803. PubMed ID: 20673021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering.
    Kolan KC; Leu MC; Hilmas GE; Brown RF; Velez M
    Biofabrication; 2011 Jun; 3(2):025004. PubMed ID: 21636879
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone.
    Hsu YH; Turner IG; Miles AW
    J Mater Sci Mater Med; 2007 Dec; 18(12):2251-6. PubMed ID: 17562138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone growth in rapid prototyped porous titanium implants.
    Lopez-Heredia MA; Goyenvalle E; Aguado E; Pilet P; Leroux C; Dorget M; Weiss P; Layrolle P
    J Biomed Mater Res A; 2008 Jun; 85(3):664-73. PubMed ID: 17876801
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of individual scaffolds based on a patient-specific alveolar bone defect model.
    Li J; Zhang L; Lv S; Li S; Wang N; Zhang Z
    J Biotechnol; 2011 Jan; 151(1):87-93. PubMed ID: 21056602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid).
    Miao X; Tan DM; Li J; Xiao Y; Crawford R
    Acta Biomater; 2008 May; 4(3):638-45. PubMed ID: 18054297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design variables for mechanical properties of bone tissue scaffolds.
    Howk D; Chu TM
    Biomed Sci Instrum; 2006; 42():278-83. PubMed ID: 16817621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography.
    Elomaa L; Teixeira S; Hakala R; Korhonen H; Grijpma DW; Seppälä JV
    Acta Biomater; 2011 Nov; 7(11):3850-6. PubMed ID: 21763796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microstereolithography-based computer-aided manufacturing for tissue engineering.
    Cho DW; Kang HW
    Methods Mol Biol; 2012; 868():341-56. PubMed ID: 22692621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques.
    Dutta Roy T; Simon JL; Ricci JL; Rekow ED; Thompson VP; Parsons JR
    J Biomed Mater Res A; 2003 Dec; 67(4):1228-37. PubMed ID: 14624509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Preparation of chitosan-encapsulated porous calcium polyphosphate bioceramic].
    Fan C; Liu D; Ren Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Dec; 21(12):1355-8. PubMed ID: 18277683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.
    Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J
    Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.