BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22097477)

  • 1. Size selective excitonic transition energies in strongly confined CdSe quantum dots.
    Thupakula U; Khan AH; Bal JK; Ariga K; Acharya S
    J Nanosci Nanotechnol; 2011 Sep; 11(9):7709-14. PubMed ID: 22097477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Size and Shape Anisotropy on Optical Properties of CdSe Quantum Dots.
    Kim SH; Man MT; Lee JW; Park KD; Lee HS
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32806736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots.
    Lee DU; Kim DH; Choi DH; Kim SW; Lee HS; Yoo KH; Kim TW
    Opt Express; 2016 Jan; 24(2):A350-7. PubMed ID: 26832587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Ag doping on the electronic and optical properties of CdSe quantum dots.
    Zhao FA; Xiao HY; Bai XM; Zu XT
    Phys Chem Chem Phys; 2019 Aug; 21(29):16108-16119. PubMed ID: 31290876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Properties of Strongly Coupled Quantum Dot-Ligand Systems.
    Frederick MT; Amin VA; Weiss EA
    J Phys Chem Lett; 2013 Feb; 4(4):634-40. PubMed ID: 26281879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast charge carrier dynamics in CdSe/V
    Yadav AN; Singh AK; Srivastava S; Kumar M; Gupta BK; Singh K
    Phys Chem Chem Phys; 2019 Mar; 21(11):6265-6273. PubMed ID: 30834922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Activity and Excitonic Characteristics of Chiral CdSe Quantum Dots.
    Han P; Du T; Yang X; Zhao Y; Zhou S; Zhao J
    J Phys Chem Lett; 2024 Mar; 15(12):3249-3257. PubMed ID: 38488567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots.
    Fouladi-Oskouei J; Shojaei S; Liu Z
    J Phys Condens Matter; 2018 Apr; 30(14):145301. PubMed ID: 29460851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.
    Yun HJ; Paik T; Diroll B; Edley ME; Baxter JB; Murray CB
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14692-700. PubMed ID: 27224958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation of exciton confinement in CdSe quantum dots by modification with a conjugated dithiocarbamate ligand.
    Frederick MT; Weiss EA
    ACS Nano; 2010 Jun; 4(6):3195-200. PubMed ID: 20503978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecule to detect and perturb the confinement of charge carriers in quantum dots.
    Frederick MT; Amin VA; Cass LC; Weiss EA
    Nano Lett; 2011 Dec; 11(12):5455-60. PubMed ID: 22032799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots.
    Beaulac R; Archer PI; Liu X; Lee S; Salley GM; Dobrowolska M; Furdyna JK; Gamelin DR
    Nano Lett; 2008 Apr; 8(4):1197-201. PubMed ID: 18331001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-dependent extinction coefficients of PbS quantum dots.
    Cademartiri L; Montanari E; Calestani G; Migliori A; Guagliardi A; Ozin GA
    J Am Chem Soc; 2006 Aug; 128(31):10337-46. PubMed ID: 16881666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of symmetry breaking on the optical transitions in lead-salt quantum dots.
    Nootz G; Padilha LA; Olszak PD; Webster S; Hagan DJ; Van Stryland EW; Levina L; Sukhovatkin V; Brzozowski L; Sargent EH
    Nano Lett; 2010 Sep; 10(9):3577-82. PubMed ID: 20734976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives.
    Kilina SV; Tamukong PK; Kilin DS
    Acc Chem Res; 2016 Oct; 49(10):2127-2135. PubMed ID: 27669357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-Originated Weak Confinement in Tetrahedral Indium Arsenide Quantum Dots.
    Kim M; Lee J; Jung J; Shin D; Kim J; Cho E; Xing Y; Jeong H; Park S; Oh SH; Kim YH; Jeong S
    J Am Chem Soc; 2024 Apr; 146(15):10251-10256. PubMed ID: 38587307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron-Phonon Coupling in CdSe/CdS Core/Shell Quantum Dots.
    Lin C; Gong K; Kelley DF; Kelley AM
    ACS Nano; 2015 Aug; 9(8):8131-41. PubMed ID: 26213123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical synthesis and optical, structural, and surface characterization of InP-In
    Granada-Ramirez DA; Arias-Cerón JS; Pérez-González M; Luna-Arias JP; Cruz-Orea A; Rodríguez-Fragoso P; Herrera-Pérez JL; Gómez-Herrera ML; Tomás SA; Vázquez-Hernández F; Durán-Ledezma AA; Mendoza-Alvarez JG
    Appl Surf Sci; 2020 Nov; 530():147294. PubMed ID: 32834267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman excitation profiles of CdS in pure CdS and CdSe/CdS core/shell quantum dots: CdS-localized excitons.
    Gong K; Kelley DF; Kelley AM
    J Chem Phys; 2017 Dec; 147(22):224702. PubMed ID: 29246046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of the size-dependent energy gap of individual CdSe quantum dots by valence electron energy-loss spectroscopy.
    Erni R; Browning ND
    Ultramicroscopy; 2007; 107(2-3):267-73. PubMed ID: 16996213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.