These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 22097489)

  • 1. Microwave-assisted facile synthesis of palladium nanoparticles in HEPES solution and their size-dependent catalytic activities to Suzuki reaction.
    Zhang W; Wang Q; Qin F; Zhou H; Lu Z; Chen R
    J Nanosci Nanotechnol; 2011 Sep; 11(9):7794-801. PubMed ID: 22097489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-mediated, green synthesis of palladium nanodendrites for catalytic reduction of nitroarenes.
    Topuz F; Uyar T
    J Colloid Interface Sci; 2019 May; 544():206-216. PubMed ID: 30849618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pd(0) nanocatalyst stabilized on a novel agar/pectin composite and its catalytic activity in the synthesis of biphenyl compounds by Suzuki-Miyaura cross coupling reaction and reduction of o-nitroaniline.
    Baran T
    Carbohydr Polym; 2018 Sep; 195():45-52. PubMed ID: 29804998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction.
    Khan M; Khan M; Kuniyil M; Adil SF; Al-Warthan A; Alkhathlan HZ; Tremel W; Tahir MN; Siddiqui MR
    Dalton Trans; 2014 Jun; 43(24):9026-31. PubMed ID: 24619034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pd nanoparticles synthesized in situ with the use of Euphorbia granulate leaf extract: Catalytic properties of the resulting particles.
    Nasrollahzadeh M; Mohammad Sajadi S
    J Colloid Interface Sci; 2016 Jan; 462():243-51. PubMed ID: 26462089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of palladium nanoparticles using
    Liu G; Bai X
    IET Nanobiotechnol; 2017 Apr; 11(3):310-316. PubMed ID: 28476989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of palladium nanocatalyst using gum kondagogu (Cochlospermum gossypium): a natural biopolymer.
    Rastogi L; Beedu SR; Kora AJ
    IET Nanobiotechnol; 2015 Dec; 9(6):362-7. PubMed ID: 26647812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green synthesis of palladium nanoparticles mediated by black tea leaves (Camellia sinensis) extract: Catalytic activity in the reduction of 4-nitrophenol and Suzuki-Miyaura coupling reaction under ligand-free conditions.
    Lebaschi S; Hekmati M; Veisi H
    J Colloid Interface Sci; 2017 Jan; 485():223-231. PubMed ID: 27665075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Fabrication of a Magnetite-based Polymer-supported Hybrid Nanocomposite: A Promising Heterogeneous Catalytic System Utilized in Known Palladium-assisted Coupling Reactions.
    Maleki A; Taheri-Ledari R; Ghalavand R
    Comb Chem High Throughput Screen; 2020; 23(2):119-125. PubMed ID: 32003667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RSM optimized Moringa oleifera peel extract for green synthesis of M. oleifera capped palladium nanoparticles with antibacterial and hemolytic property.
    Surendra TV; Roopan SM; Arasu MV; Al-Dhabi NA; Rayalu GM
    J Photochem Photobiol B; 2016 Sep; 162():550-557. PubMed ID: 27474786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of palladium and gold nanoparticles by using dialdehyde nanocellulose as template and reducing agent.
    Zhang K; Shen M; Liu H; Shang S; Wang D; Liimatainen H
    Carbohydr Polym; 2018 Apr; 186():132-139. PubMed ID: 29455970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of biogenic Pd
    Ma JF; Hou YN; Guo J; Sharif HMA; Huang C; Zhao J; Li H; Song Y; Lu C; Han Y; Zhang Y; Wang AJ
    Environ Res; 2022 Mar; 204(Pt B):112086. PubMed ID: 34562479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green synthesis, characterization and catalytic activity of the Pd/TiO2 nanoparticles for the ligand-free Suzuki-Miyaura coupling reaction.
    Nasrollahzadeh M; Sajadi SM
    J Colloid Interface Sci; 2016 Mar; 465():121-7. PubMed ID: 26674227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot hydrothermal synthesis of magnetically recoverable palladium/reduced graphene oxide nanocomposites and its catalytic applications in cross-coupling reactions.
    Fu W; Zhang Z; Zhuang P; Shen J; Ye M
    J Colloid Interface Sci; 2017 Jul; 497():83-92. PubMed ID: 28273514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suzuki coupling reaction using hybrid Pd nanoparticles.
    Kim A; Park JC; Kim M; Heo E; Song H; Park KH
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1872-83. PubMed ID: 24749462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steam treatment: a facile and effective process for the removal of PVP from shape-controlled palladium nanoparticles.
    Yang L; Cheng G; Guo Y; Li D; Xia L; Liu H
    Nanoscale; 2018 Jul; 10(25):11992-11996. PubMed ID: 29904759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise seed-mediated growth and size-controlled synthesis of palladium nanoparticles using a green chemistry approach.
    Liu J; He F; Gunn TM; Zhao D; Roberts CB
    Langmuir; 2009 Jun; 25(12):7116-28. PubMed ID: 19309120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Palladium-phosphorus/sulfur nanoparticles (NPs) decorated on graphene oxide: synthesis using the same precursor for NPs and catalytic applications in Suzuki-Miyaura coupling.
    Joshi H; Sharma KN; Sharma AK; Singh AK
    Nanoscale; 2014 May; 6(9):4588-97. PubMed ID: 24626740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendrimer-templated Pd nanoparticles and Pd nanoparticles synthesized by reverse microemulsions as efficient nanocatalysts for the Heck reaction: A comparative study.
    Noh JH; Meijboom R
    J Colloid Interface Sci; 2014 Feb; 415():57-69. PubMed ID: 24267330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of the PVP-Pd Surface Interaction in Nanoparticles through the Case Study of Formic Acid Decomposition.
    García-Aguilar J; Navlani-García M; Berenguer-Murcia Á; Mori K; Kuwahara Y; Yamashita H; Cazorla-Amorós D
    Langmuir; 2016 Nov; 32(46):12110-12118. PubMed ID: 27788005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.