These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 22097501)
1. Crystallization, mechanical properties, and controlled enzymatic degradation of biodegradable poly(epsilon-caprolactone)/multi-walled carbon nanotubes nanocomposites. Qiu Z; Wang H; Xu C J Nanosci Nanotechnol; 2011 Sep; 11(9):7884-93. PubMed ID: 22097501 [TBL] [Abstract][Full Text] [Related]
2. Crystallization kinetics and morphology studies of biodegradable poly(butylene succinate-co-butylene adipate)/multi-walled carbon nanotubes nanocomposites. Qiu Z; Zhu S; Yang W J Nanosci Nanotechnol; 2009 Aug; 9(8):4961-9. PubMed ID: 19928174 [TBL] [Abstract][Full Text] [Related]
3. Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide). Zhao Y; Qiu Z; Yang W J Phys Chem B; 2008 Dec; 112(51):16461-8. PubMed ID: 19055414 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable poly(butylene succinate)/multi-walled carbon nanotubes nanocomposite at low carbon nanotubes loading: morphology, crystallization and mechanical property. Song L; Qiu Z J Nanosci Nanotechnol; 2010 Feb; 10(2):965-72. PubMed ID: 20352743 [TBL] [Abstract][Full Text] [Related]
5. Effect of loadings of nanocellulose on the significantly improved crystallization and mechanical properties of biodegradable poly(ε-caprolactone). Li Y; Han C; Yu Y; Xiao L Int J Biol Macromol; 2020 Mar; 147():34-45. PubMed ID: 31923509 [TBL] [Abstract][Full Text] [Related]
6. Preparation and properties of biodegradable poly(L-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. Yu J; Qiu Z ACS Appl Mater Interfaces; 2011 Mar; 3(3):890-7. PubMed ID: 21361280 [TBL] [Abstract][Full Text] [Related]
7. Investigation of nanocomposites based on semi-interpenetrating network of [L-poly (epsilon-caprolactone)]/[net-poly (epsilon-caprolactone)] and hydroxyapatite nanocrystals. Hao J; Liu Y; Zhou S; Li Z; Deng X Biomaterials; 2003 Apr; 24(9):1531-9. PubMed ID: 12559813 [TBL] [Abstract][Full Text] [Related]
8. Reinforcing Effects of Poly(D-Lactide)-g-Multiwall Carbon Nanotubes on Polylactide Nanocomposites. Yang JH; Lee JY; Chin IJ J Nanosci Nanotechnol; 2015 Oct; 15(10):8086-92. PubMed ID: 26726467 [TBL] [Abstract][Full Text] [Related]
9. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Wang SF; Shen L; Zhang WD; Tong YJ Biomacromolecules; 2005; 6(6):3067-72. PubMed ID: 16283728 [TBL] [Abstract][Full Text] [Related]
10. Nanoparticle-induced controlled biodegradation and its mechanism in poly(epsilon-caprolactone). Singh NK; Das Purkayastha B; Roy JK; Banik RM; Yashpal M; Singh G; Malik S; Maiti P ACS Appl Mater Interfaces; 2010 Jan; 2(1):69-81. PubMed ID: 20356222 [TBL] [Abstract][Full Text] [Related]
11. Morphology, thermal and mechanical properties of poly (ε-caprolactone) biocomposites reinforced with nano-hydroxyapatite decorated graphene. Zhou K; Gao R; Jiang S J Colloid Interface Sci; 2017 Jun; 496():334-342. PubMed ID: 28237751 [TBL] [Abstract][Full Text] [Related]
13. Poly(epsilon-caprolactone)/chitin and poly(epsilon-caprolactone)/chitosan blend films with compositional gradients: fabrication and their biodegradability. Honma T; Zhao L; Asakawa N; Inoue Y Macromol Biosci; 2006 Mar; 6(3):241-9. PubMed ID: 16534761 [TBL] [Abstract][Full Text] [Related]
14. Selective dispersion of carbon nanotubes and nanoclay in biodegradable poly(ε-caprolactone)/poly(lactic acid) blends with improved toughness, strength and thermal stability. Zhu B; Bai T; Wang P; Wang Y; Liu C; Shen C Int J Biol Macromol; 2020 Jun; 153():1272-1280. PubMed ID: 31758994 [TBL] [Abstract][Full Text] [Related]
15. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560 [TBL] [Abstract][Full Text] [Related]
16. Effect of low multi-walled carbon nanotubes loading on the crystallization behavior of biodegradable poly(butylene adipate). Zhao Y; Qiu Z J Nanosci Nanotechnol; 2012 May; 12(5):4067-74. PubMed ID: 22852348 [TBL] [Abstract][Full Text] [Related]
17. Improved Thermal and Electrical Properties of Nanocomposites Based on Poly(vinyl pyrrolidone)/Poly(acrylonitrile)/Multiwalled Carbon Nanotubes. Aqeel SM; Al-Shuja'a O; Huang Z; Le C; Zhang Y; Wang Z J Chem Eng Chem Res; 2015 Sep; 2(9):771-779. PubMed ID: 29399605 [TBL] [Abstract][Full Text] [Related]
18. Poly(epsilon-caprolactone) and poly(epsilon-caprolactone)-polyvinylpyrrolidone-iodine blends as ureteral biomaterials: characterisation of mechanical and surface properties, degradation and resistance to encrustation in vitro. Jones DS; Djokic J; McCoy CP; Gorman SP Biomaterials; 2002 Dec; 23(23):4449-58. PubMed ID: 12322963 [TBL] [Abstract][Full Text] [Related]