These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 220977)

  • 41. Preparation and Characterization of the Favorskiiase Flavoprotein EncM and Its Distinctive Flavin-N5-Oxide Cofactor.
    Teufel R
    Methods Enzymol; 2018; 604():523-540. PubMed ID: 29779666
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of chromatography. XXVII. On the formation of FAD in the culture of Eremothecium ashbyii.
    MASUDA T; SAWA Y; ASAI M
    Pharm Bull; 1955 Oct; 3(5):375-8. PubMed ID: 13289297
    [No Abstract]   [Full Text] [Related]  

  • 43. Flavin-N5 Covalent Intermediate in a Nonredox Dehalogenation Reaction Catalyzed by an Atypical Flavoenzyme.
    Dai Y; Kizjakina K; Campbell AC; Korasick DA; Tanner JJ; Sobrado P
    Chembiochem; 2018 Jan; 19(1):53-57. PubMed ID: 29116682
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ROLE OF SEMIQUINONES IN FLAVOPROTEIN CATALYSIS.
    MASSEY V; GIBSON QH
    Fed Proc; 1964; 23():18-29. PubMed ID: 14114688
    [No Abstract]   [Full Text] [Related]  

  • 45. Crystal structure of Paracoccus denitrificans electron transfer flavoprotein: structural and electrostatic analysis of a conserved flavin binding domain.
    Roberts DL; Salazar D; Fulmer JP; Frerman FE; Kim JJ
    Biochemistry; 1999 Feb; 38(7):1977-89. PubMed ID: 10026281
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insight into covalent flavinylation and catalysis from redox, spectral, and kinetic analyses of the R474K mutant of the flavoprotein subunit of p-cresol methylhydroxylase.
    Efimov I; Cronin CN; Bergmann DJ; Kuusk V; McIntire WS
    Biochemistry; 2004 May; 43(20):6138-48. PubMed ID: 15147198
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microbial metabolism of the pyridine ring. The hydroxylation of 4-hydroxypyridine to pyridine-3,4-diol (3,4-dihydroxypyridine) by 4-hydroxypyridine-3-hydroxylase.
    Watson GK; Houghton C; Cain RB
    Biochem J; 1974 May; 140(2):265-76. PubMed ID: 4156169
    [TBL] [Abstract][Full Text] [Related]  

  • 48. From cholesterogenesis to steroidogenesis: role of riboflavin and flavoenzymes in the biosynthesis of vitamin D.
    Pinto JT; Cooper AJ
    Adv Nutr; 2014 Mar; 5(2):144-63. PubMed ID: 24618756
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence that apo-reduced nicotinamide adenine dinucleotide dehydrogenase and apo-electron-transferring flavoprotein from Peptostreptococcus elsdenii are identical.
    Whitfield CD; Mayhew SG
    J Biol Chem; 1974 May; 249(9):2811-5. PubMed ID: 4151307
    [No Abstract]   [Full Text] [Related]  

  • 50. The role of remote flavin adenine dinucleotide pieces in the oxidative decarboxylation catalyzed by salicylate hydroxylase.
    Pereira MS; de Araújo SS; Nagem RAP; Richard JP; Brandão TAS
    Bioorg Chem; 2022 Feb; 119():105561. PubMed ID: 34965488
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A multifunctional flavoprotein monooxygenase HspB for hydroxylation and C-C cleavage of 6-hydroxy-3-succinoyl-pyridine.
    Ouyang X; Liu G; Guo L; Wu G; Xu P; Zhao Y-L; Tang H
    Appl Environ Microbiol; 2024 Mar; 90(3):e0225523. PubMed ID: 38415602
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Properties of 5-hydroxyisophthalate 4-hydroxylase from a coryneform bacteria.
    Elmorsi EA; Hopper DJ
    Biochem Soc Trans; 1978; 6(5):958-9. PubMed ID: 33852
    [No Abstract]   [Full Text] [Related]  

  • 54. Inhibition by chlorpromazine of thyroxine modulation of flavin metabolism in liver, cerebrum and cerebellum.
    Pinto J; Huang YP; Rivlin RS
    Biochem Pharmacol; 1985 Jan; 34(1):93-5. PubMed ID: 3966919
    [TBL] [Abstract][Full Text] [Related]  

  • 55. THE FLAVIN COMPONENTS OF THE NADH DEHYDROGENASE OF THE RESPIRATORY CHAIN.
    KANIUGA Z; VEEGER C
    Biochim Biophys Acta; 1963 Oct; 77():339-42. PubMed ID: 14090453
    [No Abstract]   [Full Text] [Related]  

  • 56. Apoenzyme of Pseudomonas cepacia salicylate hydroxylase. Preparation, fluorescence property, and nature of flavin binding.
    Wang LH; Tu SC; Lusk RC
    J Biol Chem; 1984 Jan; 259(2):1136-42. PubMed ID: 6693380
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Covalent binding of flavins to RnfG and RnfD in the Rnf complex from Vibrio cholerae.
    Backiel J; Juárez O; Zagorevski DV; Wang Z; Nilges MJ; Barquera B
    Biochemistry; 2008 Oct; 47(43):11273-84. PubMed ID: 18831535
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 6-Azido- and 6-aminoflavins as active-site probes of flavin enzymes.
    Massey V; Ghisla S; Yagi K
    Biochemistry; 1986 Dec; 25(24):8095-102. PubMed ID: 2879563
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flavogenomics--a genomic and structural view of flavin-dependent proteins.
    Macheroux P; Kappes B; Ealick SE
    FEBS J; 2011 Aug; 278(15):2625-34. PubMed ID: 21635694
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetic and spectroscopic characterization of 1-naphthol 2-hydroxylase from Pseudomonas sp. strain C5.
    Trivedi VD; Majhi P; Phale PS
    Appl Biochem Biotechnol; 2014 Apr; 172(8):3964-77. PubMed ID: 24599669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.