These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22097854)

  • 41. Satellite-derived estimates of forest leaf area index in southwest Western Australia are not tightly coupled to interannual variations in rainfall: implications for groundwater decline in a drying climate.
    Smettem KR; Waring RH; Callow JN; Wilson M; Mu Q
    Glob Chang Biol; 2013 Aug; 19(8):2401-12. PubMed ID: 23589484
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new class of nonlinear Rauch-Tung-Striebel cubature Kalman smoothers.
    Jia B; Xin M
    ISA Trans; 2015 Mar; 55():72-80. PubMed ID: 25440949
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impacts of using an ensemble Kalman filter on air quality simulations along the California-Mexico border region during Cal-Mex 2010 field campaign.
    Bei N; Li G; Meng Z; Weng Y; Zavala M; Molina LT
    Sci Total Environ; 2014 Nov; 499():141-53. PubMed ID: 25181046
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies.
    Bréda NJ
    J Exp Bot; 2003 Nov; 54(392):2403-17. PubMed ID: 14565947
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A model of dynamics of leaves and nitrogen in a plant canopy: an integration of canopy photosynthesis, leaf life span, and nitrogen use efficiency.
    Hikosaka K
    Am Nat; 2003 Aug; 162(2):149-64. PubMed ID: 12858260
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Iterative ensemble Kalman filter for atmospheric dispersion in nuclear accidents: An application to Kincaid tracer experiment.
    Zhang XL; Su GF; Chen JG; Raskob W; Yuan HY; Huang QY
    J Hazard Mater; 2015 Oct; 297():329-39. PubMed ID: 26026852
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Spectral curve shape feature-based hyperspectral remote sensing image retrieval].
    Li F; Zhou CH; Chen RG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2482-6. PubMed ID: 19271471
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Validation of MODIS-derived bidirectional reflectivity retrieval algorithm in mid-infrared channel with field measurements.
    Tang BH; Wu H; Li ZL; Nerry F
    Opt Express; 2012 Jul; 20(16):17760-6. PubMed ID: 23038327
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MATLAB algorithm to implement soil water data assimilation with the Ensemble Kalman Filter using HYDRUS.
    Valdes-Abellan J; Pachepsky Y; Martinez G
    MethodsX; 2018; 5():184-203. PubMed ID: 29755950
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatial scaling between leaf area index maps of different resolutions.
    Jin Z; Tian Q; Chen JM; Chen M
    J Environ Manage; 2007 Nov; 85(3):628-37. PubMed ID: 17123700
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [The estimation model of rice leaf area index using hyperspectral data based on support vector machine].
    Yang XH; Huang JF; Wang XZ; Wang FM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1837-41. PubMed ID: 18975815
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Crop geometry identification based on inversion of semiempirical BRDF models].
    Zhao CJ; Huang WJ; Mu XH; Wang JD; Wang JH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Sep; 29(9):2555-9. PubMed ID: 19950674
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computationally efficient video restoration for Nyquist sampled imaging sensors combining an affine-motion-based temporal Kalman filter and adaptive Wiener filter.
    Rucci M; Hardie RC; Barnard KJ
    Appl Opt; 2014 May; 53(13):C1-13. PubMed ID: 24921885
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Building a Better Forecast: Reformulating the Ensemble Kalman Filter for Improved Applications to Volcano Deformation.
    Albright JA; Gregg PM
    Earth Space Sci; 2023 Jan; 10(1):e2022EA002522. PubMed ID: 37034274
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A method for tracking time-evolving sound speed profiles using Kalman filters.
    Huang J; Li J; Xu W
    J Acoust Soc Am; 2014 Aug; 136(2):EL129-34. PubMed ID: 25096136
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative analysis of groundwater contaminant sources identification based on simulation optimization and ensemble Kalman filter.
    Li J; Wu Z; He H; Lu W
    Environ Sci Pollut Res Int; 2022 Dec; 29(60):90081-90097. PubMed ID: 35861899
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Data driven computing by the morphing fast Fourier transform ensemble Kalman filter in epidemic spread simulations.
    Mandel J; Beezley JD; Cobb L; Krishnamurthy A
    Procedia Comput Sci; 2010 May; 1(1):1221-1229. PubMed ID: 21031155
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Resolving the data asynchronicity in high-speed atomic force microscopy measurement via the Kalman Smoother.
    Kubo S; Kato S; Nakamura K; Kodera N; Takada S
    Sci Rep; 2020 Oct; 10(1):18393. PubMed ID: 33110182
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Geomagnetic secular variation forecast using the NASA GEMS ensemble Kalman filter: A candidate SV model for IGRF-13.
    Tangborn A; Kuang W; Sabaka TJ; Yi C
    Earth Planets Space; 2021; 73(1):47. PubMed ID: 33628082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.