BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

617 related articles for article (PubMed ID: 22097985)

  • 1. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system.
    Song SJ; Choi J; Park YD; Hong S; Lee JJ; Ahn CB; Choi H; Sun K
    Artif Organs; 2011 Nov; 35(11):1132-6. PubMed ID: 22097985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization.
    Song SJ; Choi J; Park YD; Lee JJ; Hong SY; Sun K
    Artif Organs; 2010 Nov; 34(11):1044-8. PubMed ID: 21092048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioprinting endothelial cells with alginate for 3D tissue constructs.
    Khalil S; Sun W
    J Biomech Eng; 2009 Nov; 131(11):111002. PubMed ID: 20353253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology.
    Nishiyama Y; Nakamura M; Henmi C; Yamaguchi K; Mochizuki S; Nakagawa H; Takiura K
    J Biomech Eng; 2009 Mar; 131(3):035001. PubMed ID: 19154078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomatrices and biomaterials for future developments of bioprinting and biofabrication.
    Nakamura M; Iwanaga S; Henmi C; Arai K; Nishiyama Y
    Biofabrication; 2010 Mar; 2(1):014110. PubMed ID: 20811125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeform inkjet printing of cellular structures with bifurcations.
    Christensen K; Xu C; Chai W; Zhang Z; Fu J; Huang Y
    Biotechnol Bioeng; 2015 May; 112(5):1047-55. PubMed ID: 25421556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells.
    Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG
    Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser-assisted printing of alginate long tubes and annular constructs.
    Yan J; Huang Y; Chrisey DB
    Biofabrication; 2013 Mar; 5(1):015002. PubMed ID: 23172571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.
    Wu Z; Su X; Xu Y; Kong B; Sun W; Mi S
    Sci Rep; 2016 Apr; 6():24474. PubMed ID: 27091175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of printing parameters and scaffold biopolymer properties in the efficacy of a new hybrid nano-bioprinting system.
    Buyukhatipoglu K; Jo W; Sun W; Clyne AM
    Biofabrication; 2009 Sep; 1(3):035003. PubMed ID: 20811107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures.
    Jin Y; Compaan A; Bhattacharjee T; Huang Y
    Biofabrication; 2016 Jun; 8(2):025016. PubMed ID: 27257095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.
    Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P
    Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional inkjet biofabrication based on designed images.
    Arai K; Iwanaga S; Toda H; Genci C; Nishiyama Y; Nakamura M
    Biofabrication; 2011 Sep; 3(3):034113. PubMed ID: 21900730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
    Kuo CK; Ma PX
    J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of mammalian cell-enclosing calcium-alginate hydrogel fibers in a co-flowing stream.
    Takei T; Sakai S; Ijima H; Kawakami K
    Biotechnol J; 2006 Sep; 1(9):1014-7. PubMed ID: 16941441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation.
    Shang W; Liu Y; Wan W; Hu C; Liu Z; Wong CT; Fukuda T; Shen Y
    Biofabrication; 2017 Jun; 9(2):025032. PubMed ID: 28436920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.
    Kundu J; Shim JH; Jang J; Kim SW; Cho DW
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1286-97. PubMed ID: 23349081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Horseradish peroxidase/catalase-mediated cell-laden alginate-based hydrogel tube production in two-phase coaxial flow of aqueous solutions for filament-like tissues fabrication.
    Sakai S; Liu Y; Mah EJ; Taya M
    Biofabrication; 2013 Mar; 5(1):015012. PubMed ID: 23319520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.