BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22098020)

  • 1. Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide.
    Ji D; Wang L; Hou S; Liu W; Wang J; Wang Q; Zhao ZK
    J Am Chem Soc; 2011 Dec; 133(51):20857-62. PubMed ID: 22098020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of malic enzyme mutants depending on 1,2,3-triazole moiety-containing nicotinamide adenine dinucleotide analogs.
    Hou S; Ji D; Liu W; Wang L; Zhao ZK
    Bioorg Med Chem Lett; 2014 Mar; 24(5):1307-9. PubMed ID: 24513047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Insights into Malic Enzyme Variants Favoring an Unnatural Redox Cofactor.
    Liu Y; Guo X; Liu W; Wang J; Kent Zhao Z
    Chembiochem; 2021 May; 22(10):1765-1768. PubMed ID: 33523590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering d-Lactate Dehydrogenase to Favor an Non-natural Cofactor Nicotinamide Cytosine Dinucleotide.
    Liu Y; Li Q; Wang L; Guo X; Wang J; Wang Q; Zhao ZK
    Chembiochem; 2020 Jul; 21(14):1972-1975. PubMed ID: 32175634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proper positioning of the nicotinamide ring is crucial for the Ascaris suum malic enzyme reaction.
    Aktas DF; Cook PF
    Biochemistry; 2008 Feb; 47(8):2539-46. PubMed ID: 18215074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An alpha-proteobacterial type malate dehydrogenase may complement LDH function in Plasmodium falciparum. Cloning and biochemical characterization of the enzyme.
    Tripathi AK; Desai PV; Pradhan A; Khan SI; Avery MA; Walker LA; Tekwani BL
    Eur J Biochem; 2004 Sep; 271(17):3488-502. PubMed ID: 15317584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creating enzymes and self-sufficient cells for biosynthesis of the non-natural cofactor nicotinamide cytosine dinucleotide.
    Wang X; Feng Y; Guo X; Wang Q; Ning S; Li Q; Wang J; Wang L; Zhao ZK
    Nat Commun; 2021 Apr; 12(1):2116. PubMed ID: 33837188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple roles of arginine 181 in binding and catalysis in the NAD-malic enzyme from Ascaris suum.
    Karsten WE; Cook PF
    Biochemistry; 2007 Dec; 46(50):14578-88. PubMed ID: 18027982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction.
    Weiss PM; Gavva SR; Harris BG; Urbauer JL; Cleland WW; Cook PF
    Biochemistry; 1991 Jun; 30(23):5755-63. PubMed ID: 2043615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of myoglobin redox form stabilization by malate dehydrogenase.
    Mohan A; Muthukrishnan S; Hunt MC; Barstow TJ; Houser TA
    J Agric Food Chem; 2010 Jun; 58(11):6994-7000. PubMed ID: 20465256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Change in Cofactor Specificity of Oxidoreductases by Adaptive Evolution of an Escherichia coli NADPH-Auxotrophic Strain.
    Bouzon M; Döring V; Dubois I; Berger A; Stoffel GMM; Calzadiaz Ramirez L; Meyer SN; Fouré M; Roche D; Perret A; Erb TJ; Bar-Even A; Lindner SN
    mBio; 2021 Aug; 12(4):e0032921. PubMed ID: 34399608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse reaction of malic enzyme for HCO3- fixation into pyruvic acid to synthesize L-malic acid with enzymatic coenzyme regeneration.
    Ohno Y; Nakamori T; Zheng H; Suye S
    Biosci Biotechnol Biochem; 2008 May; 72(5):1278-82. PubMed ID: 18460807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli.
    van der Rest ME; Frank C; Molenaar D
    J Bacteriol; 2000 Dec; 182(24):6892-9. PubMed ID: 11092847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of carboxylic acids on the stereospecific nicotinamide adenine dinucleotide-dependent and nicotinamide adenine dinucleotide-independent lactate dehydrogenases of Leuconostoc mesenteroides.
    Doelle HW
    J Bacteriol; 1971 Dec; 108(3):1290-5. PubMed ID: 4333321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed evolution of thermotolerant malic enzyme for improved malate production.
    Morimoto Y; Honda K; Ye X; Okano K; Ohtake H
    J Biosci Bioeng; 2014 Feb; 117(2):147-152. PubMed ID: 23932397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Formaldehyde Dehydrogenase from Pseudomonas putida to Favor Nicotinamide Cytosine Dinucleotide.
    Wang J; Guo X; Wan L; Liu Y; Xue H; Zhao ZK
    Chembiochem; 2022 Apr; 23(7):e202100697. PubMed ID: 35146861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Malolactic enzyme from Oenococcus oeni: heterologous expression in Escherichia coli and biochemical characterization.
    Schümann C; Michlmayr H; Del Hierro AM; Kulbe KD; Jiranek V; Eder R; Nguyen TH
    Bioengineered; 2013; 4(3):147-52. PubMed ID: 23196745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creation of a formate: malate oxidoreductase by fusion of dehydrogenase enzymes with PEGylated cofactor swing arms.
    Ozbakir HF; Garcia KE; Banta S
    Protein Eng Des Sel; 2018 Apr; 31(4):103-108. PubMed ID: 29660073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum.
    Molenaar D; van der Rest ME; Petrović S
    Eur J Biochem; 1998 Jun; 254(2):395-403. PubMed ID: 9660197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum.
    Molenaar D; van der Rest ME; Drysch A; Yücel R
    J Bacteriol; 2000 Dec; 182(24):6884-91. PubMed ID: 11092846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.