These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 22098113)

  • 1. Comparison of combinatorial clustering methods on pharmacological data sets represented by machine learning-selected real molecular descriptors.
    Rivera-Borroto OM; Marrero-Ponce Y; García-de la Vega JM; Grau-Ábalo Rdel C
    J Chem Inf Model; 2011 Dec; 51(12):3036-49. PubMed ID: 22098113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contemporary QSAR classifiers compared.
    Bruce CL; Melville JL; Pickett SD; Hirst JD
    J Chem Inf Model; 2007; 47(1):219-27. PubMed ID: 17238267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets.
    Shen MY; Su BH; Esposito EX; Hopfinger AJ; Tseng YJ
    Chem Res Toxicol; 2011 Jun; 24(6):934-49. PubMed ID: 21504223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supervised self-organizing maps in drug discovery. 1. Robust behavior with overdetermined data sets.
    Xiao YD; Clauset A; Harris R; Bayram E; Santago P; Schmitt JD
    J Chem Inf Model; 2005; 45(6):1749-58. PubMed ID: 16309281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSAR models for predicting enzymatic hydrolysis of new chemical entities in 'soft-drug' design.
    Massarelli I; Macchia M; Minutolo F; Prota G; Bianucci AM
    Bioorg Med Chem; 2009 May; 17(10):3543-56. PubMed ID: 19398207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuzzy tricentric pharmacophore fingerprints. 1. Topological fuzzy pharmacophore triplets and adapted molecular similarity scoring schemes.
    Bonachéra F; Parent B; Barbosa F; Froloff N; Horvath D
    J Chem Inf Model; 2006; 46(6):2457-77. PubMed ID: 17125187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F.
    Wang XS; Tang H; Golbraikh A; Tropsha A
    J Chem Inf Model; 2008 May; 48(5):997-1013. PubMed ID: 18470978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spline-fitting with a genetic algorithm: a method for developing classification structure-activity relationships.
    Sutherland JJ; O'Brien LA; Weaver DF
    J Chem Inf Comput Sci; 2003; 43(6):1906-15. PubMed ID: 14632439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of antibacterial compounds by machine learning approaches.
    Yang XG; Chen D; Wang M; Xue Y; Chen YZ
    J Comput Chem; 2009 Jun; 30(8):1202-11. PubMed ID: 18988254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A machine learning-based approach to prognostic analysis of thoracic transplantations.
    Delen D; Oztekin A; Kong ZJ
    Artif Intell Med; 2010 May; 49(1):33-42. PubMed ID: 20153956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-chiral quadratic indices of the 'molecular pseudograph's atom adjacency matrix' and their application to central chirality codification: classification of ACE inhibitors and prediction of sigma-receptor antagonist activities.
    Ponce YM; Diaz HG; Zaldivar VR; Torrens F; Castro EA
    Bioorg Med Chem; 2004 Oct; 12(20):5331-42. PubMed ID: 15388160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques.
    Eitrich T; Kless A; Druska C; Meyer W; Grotendorst J
    J Chem Inf Model; 2007; 47(1):92-103. PubMed ID: 17238253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.
    Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y
    J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QSAR--how good is it in practice? Comparison of descriptor sets on an unbiased cross section of corporate data sets.
    Gedeck P; Rohde B; Bartels C
    J Chem Inf Model; 2006; 46(5):1924-36. PubMed ID: 16995723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural networks in building QSAR models.
    Baskin II; Palyulin VA; Zefirov NS
    Methods Mol Biol; 2008; 458():137-58. PubMed ID: 19065809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dunn's index for cluster tendency assessment of pharmacological data sets.
    Rivera-Borroto OM; Rabassa-Gutiérrez M; Grau-Ábalo Rdel C; Marrero-Ponce Y; García-de la Vega JM
    Can J Physiol Pharmacol; 2012 Apr; 90(4):425-33. PubMed ID: 22443093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining cluster analysis, feature selection and multiple support vector machine models for the identification of human ether-a-go-go related gene channel blocking compounds.
    Nisius B; Göller AH; Bajorath J
    Chem Biol Drug Des; 2009 Jan; 73(1):17-25. PubMed ID: 19152631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond the scope of Free-Wilson analysis: building interpretable QSAR models with machine learning algorithms.
    Chen H; Carlsson L; Eriksson M; Varkonyi P; Norinder U; Nilsson I
    J Chem Inf Model; 2013 Jun; 53(6):1324-36. PubMed ID: 23789733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification.
    Byvatov E; Fechner U; Sadowski J; Schneider G
    J Chem Inf Comput Sci; 2003; 43(6):1882-9. PubMed ID: 14632437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using molecular docking, 3D-QSAR, and cluster analysis for screening structurally diverse data sets of pharmacological interest.
    Santos-Filho OA; Cherkasov A
    J Chem Inf Model; 2008 Oct; 48(10):2054-65. PubMed ID: 18816024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.