These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22098124)

  • 1. The influence of knee marker placement error on evaluation of gait kinematic parameters.
    Szczerbik E; Kalinowska M
    Acta Bioeng Biomech; 2011; 13(3):43-6. PubMed ID: 22098124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of knee marker misplacement on gait kinematics of children with cerebral palsy using the Conventional Gait Model-A sensitivity study.
    Fonseca M; Gasparutto X; Leboeuf F; Dumas R; Armand S
    PLoS One; 2020; 15(4):e0232064. PubMed ID: 32330162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The efficacy of the floor-reaction ankle-foot orthosis in children with cerebral palsy.
    Rogozinski BM; Davids JR; Davis RB; Jameson GG; Blackhurst DW
    J Bone Joint Surg Am; 2009 Oct; 91(10):2440-7. PubMed ID: 19797580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screw-Home Movement of the Tibiofemoral Joint during Normal Gait: Three-Dimensional Analysis.
    Kim HY; Kim KJ; Yang DS; Jeung SW; Choi HG; Choy WS
    Clin Orthop Surg; 2015 Sep; 7(3):303-9. PubMed ID: 26330951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of Primary and Revision Total Hip Arthroplasty on Gait Kinematics].
    Janura M; ZahutovÁ E; Gallo J; Svoboda Z; HonzÍkovÁ L
    Acta Chir Orthop Traumatol Cech; 2020; 87(4):243-250. PubMed ID: 32940219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of lower limb malalignment in the frontal plane on transverse plane mechanics during gait in young individuals with varus knee alignment.
    Stief F; Böhm H; Dussa CU; Multerer C; Schwirtz A; Imhoff AB; Döderlein L
    Knee; 2014 Jun; 21(3):688-93. PubMed ID: 24725590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximal placement of lateral thigh skin markers reduces soft tissue artefact during normal gait using the Conventional Gait Model.
    Cockcroft J; Louw Q; Baker R
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1497-504. PubMed ID: 26929983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Changes associated with aging in angular kinematic parameters during a controlled speed walk].
    Calderón D MJ; Ulloa J RA
    Rev Med Chil; 2016 Jan; 144(1):74-82. PubMed ID: 26998985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.
    Fantozzi S; Giovanardi A; Borra D; Gatta G
    PLoS One; 2015; 10(9):e0138105. PubMed ID: 26368131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of the greater trochanter marker in the thigh segment model: implications for hip and knee frontal and transverse plane motion.
    Graci V; Salsich G
    J Sport Health Sci; 2016 Mar; 5(1):95-100. PubMed ID: 27158531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative biomechanical analysis of gait in patients with central cord and Brown-Séquard syndrome.
    Gil-Agudo A; Pérez-Nombela S; Pérez-Rizo E; del Ama-Espinosa A; Crespo-Ruiz B; Pons JL
    Disabil Rehabil; 2013; 35(22):1869-76. PubMed ID: 23600711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of kinematic and kinetic parameters calculated using a cluster-based model and Vicon's plug-in gait.
    Duffell LD; Hope N; McGregor AH
    Proc Inst Mech Eng H; 2014 Feb; 228(2):206-10. PubMed ID: 24449800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute influence of restricted ankle dorsiflexion angle on knee joint mechanics during gait.
    Ota S; Ueda M; Aimoto K; Suzuki Y; Sigward SM
    Knee; 2014 Jun; 21(3):669-75. PubMed ID: 24530209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of the OLGA and VCM models to erroneous marker placement: effects on 3D-gait kinematics.
    Groen BE; Geurts M; Nienhuis B; Duysens J
    Gait Posture; 2012 Mar; 35(3):517-21. PubMed ID: 22245226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Threshold of equinus which alters biomechanical gait parameters in children.
    Houx L; Lempereur M; Rémy-Néris O; Brochard S
    Gait Posture; 2013 Sep; 38(4):582-9. PubMed ID: 23465759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the kinematic parameters of normal-paced gait in subjects with gonarthrosis and the influence of gonarthrosis on the function of the ankle joint and hip joint.
    Ogrodzka K; Niedźwiedzki T; Chwała W
    Acta Bioeng Biomech; 2011; 13(3):47-54. PubMed ID: 22098154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2.
    Yeung LF; Yang Z; Cheng KC; Du D; Tong RK
    Gait Posture; 2021 Jun; 87():19-26. PubMed ID: 33878509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of surface on kinematic gait parameters and lower extremity joints mobility.
    Staszkiewicz R; Chwała W; Forczek W; Laska J
    Acta Bioeng Biomech; 2012; 14(1):75-82. PubMed ID: 22741545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of thigh and shank marker quantity on lower extremity kinematics using a constrained model.
    Slater AA; Hullfish TJ; Baxter JR
    BMC Musculoskelet Disord; 2018 Nov; 19(1):399. PubMed ID: 30424811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The three-dimensional pattern of the pelvis movement in standarized gait cycle in patients before and after knee arthroplasty--leading article].
    Ogrodzka K; Chwała W; Niedźwiedzki T
    Chir Narzadow Ruchu Ortop Pol; 2007; 72(6):397-403. PubMed ID: 18402006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.