These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 22098173)
1. Enhancing the effect of the nanofiber network structure on thermoresponsive wettability switching. Konosu Y; Matsumoto H; Tsuboi K; Minagawa M; Tanioka A Langmuir; 2011 Dec; 27(24):14716-20. PubMed ID: 22098173 [TBL] [Abstract][Full Text] [Related]
2. Effect of dew condensation on the wettability of rough hydrophobic surfaces coated with two different silanes. Furuta T; Sakai M; Isobe T; Nakajima A Langmuir; 2010 Aug; 26(16):13305-9. PubMed ID: 20695572 [TBL] [Abstract][Full Text] [Related]
4. Controllable drug release of electrospun thermoresponsive poly(N-isopropylacrylamide)/poly(2-acrylamido-2- methylpropanesulfonic acid) nanofibers. Lin X; Tang D; Cui W; Cheng Y J Biomed Mater Res A; 2012 Jul; 100(7):1839-45. PubMed ID: 22488676 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Wettability Changes by Synergistic Effect of Micro/Nanoimprinted Substrates and Grafted Thermoresponsive Polymer Brushes. Nagase K; Onuma T; Yamato M; Takeda N; Okano T Macromol Rapid Commun; 2015 Nov; 36(22):1965-70. PubMed ID: 26375171 [TBL] [Abstract][Full Text] [Related]
6. Control over wettability of polyethylene glycol surfaces using capillary lithography. Suh KY; Jon S Langmuir; 2005 Jul; 21(15):6836-41. PubMed ID: 16008394 [TBL] [Abstract][Full Text] [Related]
7. Reversible photo-/thermoresponsive structured polymer surfaces modified with a spirobenzopyran-containing copolymer for tunable wettability. Joseph G; Pichardo J; Chen G Analyst; 2010 Sep; 135(9):2303-8. PubMed ID: 20668744 [TBL] [Abstract][Full Text] [Related]
9. CO2 -Responsive Nanofibrous Membranes with Switchable Oil/Water Wettability. Che H; Huo M; Peng L; Fang T; Liu N; Feng L; Wei Y; Yuan J Angew Chem Int Ed Engl; 2015 Jul; 54(31):8934-8. PubMed ID: 26079643 [TBL] [Abstract][Full Text] [Related]
10. Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. da Silva RM; Mano JF; Reis RL Trends Biotechnol; 2007 Dec; 25(12):577-83. PubMed ID: 17997178 [TBL] [Abstract][Full Text] [Related]
11. Heparin release from thermosensitive polymer coatings: in vivo studies. Gutowska A; Bae YH; Jacobs H; Mohammad F; Mix D; Feijen J; Kim SW J Biomed Mater Res; 1995 Jul; 29(7):811-21. PubMed ID: 7593019 [TBL] [Abstract][Full Text] [Related]
13. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure. Ran C; Ding G; Liu W; Deng Y; Hou W Langmuir; 2008 Sep; 24(18):9952-5. PubMed ID: 18702472 [TBL] [Abstract][Full Text] [Related]
14. Parallel effects of cations on PNIPAM graft wettability and PNIPAM solubility. Fu H; Hong X; Wan A; Batteas JD; Bergbreiter DE ACS Appl Mater Interfaces; 2010 Feb; 2(2):452-8. PubMed ID: 20356191 [TBL] [Abstract][Full Text] [Related]
16. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. Dowling DP; Miller IS; Ardhaoui M; Gallagher WM J Biomater Appl; 2011 Sep; 26(3):327-47. PubMed ID: 20566655 [TBL] [Abstract][Full Text] [Related]
19. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale. Leroy F; Müller-Plathe F Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209 [TBL] [Abstract][Full Text] [Related]