These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 22098348)

  • 1. Iron chelation: deciphering novel molecular targets for cancer therapy. The tip of the iceberg of a web of iron-regulated molecules.
    Saletta F; Kovacevic Z; Richardson DR
    Future Med Chem; 2011 Dec; 3(16):1983-6. PubMed ID: 22098348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311.
    Chaston TB; Lovejoy DB; Watts RN; Richardson DR
    Clin Cancer Res; 2003 Jan; 9(1):402-14. PubMed ID: 12538494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthracycline toxicity, iron and oxygen radicals, and chelation therapy.
    Gutteridge JM
    J Lab Clin Med; 1993 Sep; 122(3):228-9. PubMed ID: 8409695
    [No Abstract]   [Full Text] [Related]  

  • 4. Iron chelator-mediated alterations in gene expression: identification of novel iron-regulated molecules that are molecular targets of hypoxia-inducible factor-1 alpha and p53.
    Saletta F; Suryo Rahmanto Y; Noulsri E; Richardson DR
    Mol Pharmacol; 2010 Mar; 77(3):443-58. PubMed ID: 20023006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell permeable iron chelators as potential cancer chemotherapeutic agents.
    Pahl PM; Horwitz LD
    Cancer Invest; 2005; 23(8):683-91. PubMed ID: 16377587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New iron chelators in anthracycline-induced cardiotoxicity.
    Kaiserová H; Simunek T; Sterba M; den Hartog GJ; Schröterová L; Popelová O; Gersl V; Kvasnicková E; Bast A
    Cardiovasc Toxicol; 2007; 7(2):145-50. PubMed ID: 17652820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of malignant cell growth by 311, a novel iron chelator of the pyridoxal isonicotinoyl hydrazone class: effect on the R2 subunit of ribonucleotide reductase.
    Green DA; Antholine WE; Wong SJ; Richardson DR; Chitambar CR
    Clin Cancer Res; 2001 Nov; 7(11):3574-9. PubMed ID: 11705879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics.
    Whitnall M; Howard J; Ponka P; Richardson DR
    Proc Natl Acad Sci U S A; 2006 Oct; 103(40):14901-6. PubMed ID: 17003122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring the efficiency of iron chelation therapy: the potential of nontransferrin-bound iron.
    Hider RC; Silva AM; Podinovskaia M; Ma Y
    Ann N Y Acad Sci; 2010 Aug; 1202():94-9. PubMed ID: 20712779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New advances in iron metabolism, iron deficiency, and iron overload.
    Brittenham GM
    Curr Opin Hematol; 1994 Mar; 1(2):101-6. PubMed ID: 9371267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of iron chelators for the treatment of iron overload disease and cancer.
    Kalinowski DS; Richardson DR
    Pharmacol Rev; 2005 Dec; 57(4):547-83. PubMed ID: 16382108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron chelation therapy in hereditary hemochromatosis and thalassemia intermedia: regulatory and non regulatory mechanisms of increased iron absorption.
    Kontoghiorghes GJ; Spyrou A; Kolnagou A
    Hemoglobin; 2010 Jun; 34(3):251-64. PubMed ID: 20524815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of iron overload in thalassemia.
    Cianciulli P
    Pediatr Endocrinol Rev; 2008 Oct; 6 Suppl 1():208-13. PubMed ID: 19337180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral iron chelators.
    Kwiatkowski JL
    Hematol Oncol Clin North Am; 2010 Feb; 24(1):229-48. PubMed ID: 20113905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer's disease.
    Reznichenko L; Amit T; Zheng H; Avramovich-Tirosh Y; Youdim MB; Weinreb O; Mandel S
    J Neurochem; 2006 Apr; 97(2):527-36. PubMed ID: 16539659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acyclonucleoside iron chelators of 1-(2-hydroxyethoxy)methyl-2-alkyl-3-hydroxy-4-pyridinones: potential oral iron chelation therapeutics.
    Liu G; Men P; Kenner GH; Miller SC; Bruenger FW
    Nucleosides Nucleotides Nucleic Acids; 2004; 23(3):599-611. PubMed ID: 15113026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controversies surrounding iron chelation therapy for MDS.
    Leitch HA
    Blood Rev; 2011 Jan; 25(1):17-31. PubMed ID: 21030120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of iron-chelating agents in cultured heart muscle cells. Identification of a potential drug for chelation therapy.
    Sciortino CV; Byers BR; Cox P
    J Lab Clin Med; 1980 Dec; 96(6):1081-5. PubMed ID: 7430764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of T2* magnetic resonance in monitoring iron chelation therapy.
    Carpenter JP; Pennell DJ
    Acta Haematol; 2009; 122(2-3):146-54. PubMed ID: 19907152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron-chelating therapy.
    Hershko C; Weatherall DJ
    Crit Rev Clin Lab Sci; 1988; 26(4):303-45. PubMed ID: 3077034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.