These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22098733)

  • 21. Munc13-4 is a limiting factor in the pathway required for platelet granule release and hemostasis.
    Ren Q; Wimmer C; Chicka MC; Ye S; Ren Y; Hughson FM; Whiteheart SW
    Blood; 2010 Aug; 116(6):869-77. PubMed ID: 20435885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The exocytosis of human blood platelets. A fast freezing and freeze-substitution analysis.
    Morgenstern E; Neumann K; Patscheke H
    Eur J Cell Biol; 1987 Apr; 43(2):273-82. PubMed ID: 3595636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SNARE-dependent membrane fusion initiates α-granule matrix decondensation in mouse platelets.
    Pokrovskaya ID; Joshi S; Tobin M; Desai R; Aronova MA; Kamykowski JA; Zhang G; Whiteheart SW; Leapman RD; Storrie B
    Blood Adv; 2018 Nov; 2(21):2947-2958. PubMed ID: 30401752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Serglycin proteoglycan deletion induces defects in platelet aggregation and thrombus formation in mice.
    Woulfe DS; Lilliendahl JK; August S; Rauova L; Kowalska MA; Abrink M; Pejler G; White JG; Schick BP
    Blood; 2008 Apr; 111(7):3458-67. PubMed ID: 18094327
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 and 4 in lysosome release.
    Chen D; Lemons PP; Schraw T; Whiteheart SW
    Blood; 2000 Sep; 96(5):1782-8. PubMed ID: 10961877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms of secretory granule transport and exocytosis in anterior pituitary cells.
    Senda T
    Ital J Anat Embryol; 1995; 100 Suppl 1():219-29. PubMed ID: 11322296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromogranin A induces the biogenesis of granules with calcium- and actin-dependent dynamics and exocytosis in constitutively secreting cells.
    Elias S; Delestre C; Ory S; Marais S; Courel M; Vazquez-Martinez R; Bernard S; Coquet L; Malagon MM; Driouich A; Chan P; Gasman S; Anouar Y; Montero-Hadjadje M
    Endocrinology; 2012 Sep; 153(9):4444-56. PubMed ID: 22851679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multicore vesicles: hyperosmolarity and L-DOPA induce homotypic fusion of dense core vesicles.
    Sombers LA; Maxson MM; Ewing AG
    Cell Mol Neurobiol; 2007 Aug; 27(5):681-5. PubMed ID: 17554620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release.
    Walther DJ; Peter JU; Winter S; Höltje M; Paulmann N; Grohmann M; Vowinckel J; Alamo-Bethencourt V; Wilhelm CS; Ahnert-Hilger G; Bader M
    Cell; 2003 Dec; 115(7):851-62. PubMed ID: 14697203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Granule mobility, fusion frequency and insulin secretion are differentially affected by insulinotropic stimuli.
    Schumacher K; Matz M; Brüning D; Baumann K; Rustenbeck I
    Traffic; 2015 May; 16(5):493-509. PubMed ID: 25615411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polarized TIRFM reveals changes in plasma membrane topology before and during granule fusion.
    Anantharam A; Axelrod D; Holz RW
    Cell Mol Neurobiol; 2010 Nov; 30(8):1343-9. PubMed ID: 21061164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamate release from platelets: exocytosis versus glutamate transporter reversal.
    Kasatkina LA; Borisova TA
    Int J Biochem Cell Biol; 2013 Nov; 45(11):2585-95. PubMed ID: 23994539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Secretory vesicles membrane area is regulated in tandem with quantal size in chromaffin cells.
    Gong LW; Hafez I; Alvarez de Toledo G; Lindau M
    J Neurosci; 2003 Aug; 23(21):7917-21. PubMed ID: 12944522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms.
    Puri N; Roche PA
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2580-5. PubMed ID: 18250339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of reserpine and ethylenediaminetetraacetic acid (EDTA) on serotonin storage organelles of blood platelets.
    Gerrard JM; Rao GH; White JG
    Am J Pathol; 1977 Jun; 87(3):633-46. PubMed ID: 405872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Munc13-4 as a Ca2+-dependent tether during platelet secretion.
    Chicka MC; Ren Q; Richards D; Hellman LM; Zhang J; Fried MG; Whiteheart SW
    Biochem J; 2016 Mar; 473(5):627-39. PubMed ID: 26637270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The proton gradient of secretory granules and glutamate transport in blood platelets during cholesterol depletion of the plasma membrane by methyl-β-cyclodextrin.
    Borisova T; Kasatkina L; Ostapchenko L
    Neurochem Int; 2011 Nov; 59(6):965-75. PubMed ID: 21787821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The cellular basis of platelet secretion: Emerging structure/function relationships.
    Yadav S; Storrie B
    Platelets; 2017 Mar; 28(2):108-118. PubMed ID: 28010140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ATP is required in platelet serotonin exocytosis for protein phosphorylation and priming of secretory vesicles docked on the plasma membrane.
    Morimoto T; Ogihara S
    J Cell Sci; 1996 Jan; 109 ( Pt 1)():113-8. PubMed ID: 8834796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Artificial exocytotic system that secretes intravesicular contents upon Ca2+ influx.
    Sasai M; Tadokoro S; Hirashima N
    Langmuir; 2010 Sep; 26(18):14788-92. PubMed ID: 20722459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.