These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 22098752)

  • 1. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization.
    Xu D; Zhang Y
    Biophys J; 2011 Nov; 101(10):2525-34. PubMed ID: 22098752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. REMO: A new protocol to refine full atomic protein models from C-alpha traces by optimizing hydrogen-bonding networks.
    Li Y; Zhang Y
    Proteins; 2009 Aug; 76(3):665-76. PubMed ID: 19274737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3Drefine: consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization.
    Bhattacharya D; Cheng J
    Proteins; 2013 Jan; 81(1):119-31. PubMed ID: 22927229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward better refinement of comparative models: predicting loops in inexact environments.
    Sellers BD; Zhu K; Zhao S; Friesner RA; Jacobson MP
    Proteins; 2008 Aug; 72(3):959-71. PubMed ID: 18300241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. refineD: improved protein structure refinement using machine learning based restrained relaxation.
    Bhattacharya D
    Bioinformatics; 2019 Sep; 35(18):3320-3328. PubMed ID: 30759180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning to Predict Protein Backbone Structure from High-Resolution Cryo-EM Density Maps.
    Si D; Moritz SA; Pfab J; Hou J; Cao R; Wang L; Wu T; Cheng J
    Sci Rep; 2020 Mar; 10(1):4282. PubMed ID: 32152330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure prediction of loops with fixed and flexible stems.
    Subramani A; Floudas CA
    J Phys Chem B; 2012 Jun; 116(23):6670-82. PubMed ID: 22352982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physics-based potentials for the coupling between backbone- and side-chain-local conformational states in the UNited RESidue (UNRES) force field for protein simulations.
    Sieradzan AK; Krupa P; Scheraga HA; Liwo A; Czaplewski C
    J Chem Theory Comput; 2015 Feb; 11(2):817-31. PubMed ID: 25691834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STRUM: structure-based prediction of protein stability changes upon single-point mutation.
    Quan L; Lv Q; Zhang Y
    Bioinformatics; 2016 Oct; 32(19):2936-46. PubMed ID: 27318206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved side-chain prediction accuracy using an ab initio potential energy function and a very large rotamer library.
    Peterson RW; Dutton PL; Wand AJ
    Protein Sci; 2004 Mar; 13(3):735-51. PubMed ID: 14978310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks.
    Walsh I; BaĆ¹ D; Martin AJ; Mooney C; Vullo A; Pollastri G
    BMC Struct Biol; 2009 Jan; 9():5. PubMed ID: 19183478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. i3Drefine software for protein 3D structure refinement and its assessment in CASP10.
    Bhattacharya D; Cheng J
    PLoS One; 2013; 8(7):e69648. PubMed ID: 23894517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tri-peptide reference structures for the calculation of relative solvent accessible surface area in protein amino acid residues.
    Topham CM; Smith JC
    Comput Biol Chem; 2015 Feb; 54():33-43. PubMed ID: 25544680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Template-Guided Protein Structure Prediction and Refinement Using Optimized Folding Landscape Force Fields.
    Chen M; Lin X; Lu W; Schafer NP; Onuchic JN; Wolynes PG
    J Chem Theory Comput; 2018 Nov; 14(11):6102-6116. PubMed ID: 30240202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LOOPER: a molecular mechanics-based algorithm for protein loop prediction.
    Spassov VZ; Flook PK; Yan L
    Protein Eng Des Sel; 2008 Feb; 21(2):91-100. PubMed ID: 18194981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Template-based protein structure prediction in CASP11 and retrospect of I-TASSER in the last decade.
    Yang J; Zhang W; He B; Walker SE; Zhang H; Govindarajoo B; Virtanen J; Xue Z; Shen HB; Zhang Y
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):233-46. PubMed ID: 26343917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detailed analysis of grid-based molecular docking: A case study of CDOCKER-A CHARMm-based MD docking algorithm.
    Wu G; Robertson DH; Brooks CL; Vieth M
    J Comput Chem; 2003 Oct; 24(13):1549-62. PubMed ID: 12925999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8.
    Krieger E; Joo K; Lee J; Lee J; Raman S; Thompson J; Tyka M; Baker D; Karplus K
    Proteins; 2009; 77 Suppl 9(Suppl 9):114-22. PubMed ID: 19768677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GRID: a high-resolution protein structure refinement algorithm.
    Chitsaz M; Mayo SL
    J Comput Chem; 2013 Mar; 34(6):445-50. PubMed ID: 23065773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of side-chains in homology modelling. Application to the C-terminal lobe of rhizopuspepsin.
    Summers NL; Karplus M
    J Mol Biol; 1989 Dec; 210(4):785-811. PubMed ID: 2693742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.