These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22098862)

  • 21. Cyclic pressure and angiotensin II influence the biomechanical properties of aortic valves.
    Myles V; Liao J; Warnock JN
    J Biomech Eng; 2014 Jan; 136(1):011011. PubMed ID: 24240552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Comparison of mechanical properties between human aortic valve and pulmonary arterial valve].
    Li Z; Cheng M; Yu J; Cheng J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Jun; 14(2):115-7. PubMed ID: 9817637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Method to Quantify Tensile Biaxial Properties of Mouse Aortic Valve Leaflets.
    Chaparro D; Dargam V; Alvarez P; Yeung J; Saytashev I; Bustillo J; Loganathan A; Ramella-Roman J; Agarwal A; Hutcheson JD
    J Biomech Eng; 2020 Oct; 142(10):. PubMed ID: 32291440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the Compressibility of Arterial Tissue.
    Nolan DR; McGarry JP
    Ann Biomed Eng; 2016 Apr; 44(4):993-1007. PubMed ID: 26297340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Internal shear properties of fresh porcine aortic valve cusps: implications for normal valve function.
    Talman EA; Boughner DR
    J Heart Valve Dis; 1996 Mar; 5(2):152-9. PubMed ID: 8665007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading.
    Huang HY; Liao J; Sacks MS
    J Biomech Eng; 2007 Dec; 129(6):880-89. PubMed ID: 18067392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specimen specific parameter identification of ovine lumbar intervertebral discs: On the influence of fibre-matrix and fibre-fibre shear interactions.
    Reutlinger C; Bürki A; Brandejsky V; Ebert L; Büchler P
    J Mech Behav Biomed Mater; 2014 Feb; 30():279-89. PubMed ID: 24361932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A transverse isotropic constitutive model for the aortic valve tissue incorporating rate-dependency and fibre dispersion: Application to biaxial deformation.
    Anssari-Benam A; Tseng YT; Bucchi A
    J Mech Behav Biomed Mater; 2018 Sep; 85():80-93. PubMed ID: 29859418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The anisotropic mechanical behaviour of passive skeletal muscle tissue subjected to large tensile strain.
    Takaza M; Moerman KM; Gindre J; Lyons G; Simms CK
    J Mech Behav Biomed Mater; 2013 Jan; 17():209-20. PubMed ID: 23127635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A mathematical model for creep, relaxation and strain stiffening in parallel-fibered collagenous tissues.
    Sopakayang R; De Vita R
    Med Eng Phys; 2011 Nov; 33(9):1056-63. PubMed ID: 21622018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bladder tissue biomechanical behavior: Experimental tests and constitutive formulation.
    Natali AN; Audenino AL; Artibani W; Fontanella CG; Carniel EL; Zanetti EM
    J Biomech; 2015 Sep; 48(12):3088-96. PubMed ID: 26253759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Viscoelastic properties of the aortic valve interstitial cell.
    Merryman WD; Bieniek PD; Guilak F; Sacks MS
    J Biomech Eng; 2009 Apr; 131(4):041005. PubMed ID: 19275434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading.
    Bonifasi-Lista C; Lake SP; Small MS; Weiss JA
    J Orthop Res; 2005 Jan; 23(1):67-76. PubMed ID: 15607877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Computational Tool for the Microstructure Optimization of a Polymeric Heart Valve Prosthesis.
    Serrani M; Brubert J; Stasiak J; De Gaetano F; Zaffora A; Costantino ML; Moggridge GD
    J Biomech Eng; 2016 Jun; 138(6):061001. PubMed ID: 27018454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aortic valve mechanics--Part I: material properties of natural porcine aortic valves.
    Missirlis YF; Chong M
    J Bioeng; 1978 Jun; 2(3-4):287-300. PubMed ID: 711721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet.
    Yap CH; Saikrishnan N; Tamilselvan G; Yoganathan AP
    J Biomech Eng; 2011 Jun; 133(6):061007. PubMed ID: 21744927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of uniaxial and biaxial mechanical properties of the annulus fibrosus: a porcine model.
    Gregory DE; Callaghan JP
    J Biomech Eng; 2011 Feb; 133(2):024503. PubMed ID: 21280886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stress relaxation preconditioning of porcine aortic valves.
    Carew EO; Garg A; Barber JE; Vesely I
    Ann Biomed Eng; 2004 Apr; 32(4):563-72. PubMed ID: 15117030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Depth and rate dependent mechanical behaviors for articular cartilage: experiments and theoretical predictions.
    Gao LL; Zhang CQ; Gao H; Liu ZD; Xiao PP
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():244-51. PubMed ID: 24656375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.