These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 22098901)

  • 1. Fatigue behavior of TiNi foams processed by the magnesium space holder technique.
    Nakaş GI; Dericioglu AF; Bor S
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2017-23. PubMed ID: 22098901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superelasticity and compression behavior of porous TiNi alloys produced using Mg spacers.
    Aydoğmuş T; Bor S
    J Mech Behav Biomed Mater; 2012 Nov; 15():59-69. PubMed ID: 23032426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Titanium-nickel shape memory alloy foams for bone tissue engineering.
    Xiong JY; Li YC; Wang XJ; Hodgson PD; Wen CE
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):269-73. PubMed ID: 19627791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications.
    Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compression fatigue behavior of laser processed porous NiTi alloy.
    Bernard S; Krishna Balla V; Bose S; Bandyopadhyay A
    J Mech Behav Biomed Mater; 2012 Sep; 13():62-8. PubMed ID: 22842276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of microporous NiTi by transient liquid phase sintering of elemental powders.
    Ismail MH; Goodall R; Davies HA; Todd I
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1480-5. PubMed ID: 24364948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties and in vitro biological response to porous titanium alloys prepared for use in intervertebral implants.
    Caparrós C; Guillem-Martí J; Molmeneu M; Punset M; Calero JA; Gil FJ
    J Mech Behav Biomed Mater; 2014 Nov; 39():79-86. PubMed ID: 25108271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility of 17-4 PH stainless steel foam for implant applications.
    Mutlu I; Oktay E
    Biomed Mater Eng; 2011; 21(4):223-33. PubMed ID: 22182790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape-memory NiTi foams produced by replication of NaCl space-holders.
    Bansiddhi A; Dunand DC
    Acta Biomater; 2008 Nov; 4(6):1996-2007. PubMed ID: 18678532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of porous-Ti6Al4V alloy by using hot pressing technique and Mg space holder for hard-tissue biomedical applications.
    Aslan N; Aksakal B; Findik F
    J Mater Sci Mater Med; 2021 Jun; 32(7):80. PubMed ID: 34191138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.
    Xu JL; Bao LZ; Liu AH; Jin XJ; Tong YX; Luo JM; Zhong ZC; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():387-93. PubMed ID: 25492002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressive mechanical compatibility of anisotropic porous Ti6Al4V alloys in the range of physiological strain rate for cortical bone implant applications.
    Li F; Li J; Kou H; Huang T; Zhou L
    J Mater Sci Mater Med; 2015 Sep; 26(9):233. PubMed ID: 26384823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low elastic modulus titanium-nickel scaffolds for bone implants.
    Li J; Yang H; Wang H; Ruan J
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():110-4. PubMed ID: 24268239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of open-pore titanium foam.
    Imwinkelried T
    J Biomed Mater Res A; 2007 Jun; 81(4):964-70. PubMed ID: 17252551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive macroporous titanium implants highly interconnected.
    Caparrós C; Ortiz-Hernandez M; Molmeneu M; Punset M; Calero JA; Aparicio C; Fernández-Fairén M; Perez R; Gil FJ
    J Mater Sci Mater Med; 2016 Oct; 27(10):151. PubMed ID: 27582071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the oxygen content in solution on the static and cyclic deformation of titanium foams.
    Lefebvre LP; Baril E; Bureau MN
    J Mater Sci Mater Med; 2009 Nov; 20(11):2223-33. PubMed ID: 19554427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on tensile, bending, fatigue, and in vivo behavior of porous SHS-TiNi alloy used as a bone substitute.
    Yasenchuk Y; Marchenko E; Baigonakova G; Gunther S; Kokorev O; Gunter V; Chekalkin T; Topolnitskiy E; Obrosov A; Kang JH
    Biomed Mater; 2021 Feb; 16(2):021001. PubMed ID: 32629431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of Ti-Ta-Nb-Mn foams.
    Aguilar C; Guerra C; Lascano S; Guzman D; Rojas PA; Thirumurugan M; Bejar L; Medina A
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():420-31. PubMed ID: 26478329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical biocompatibilities of titanium alloys for biomedical applications.
    Niinomi M
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):30-42. PubMed ID: 19627769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.